

USE OF INFRARED THERMOGRAPHY IN THE ACTIVITY OF BUILDINGS EXPERTISE

Dan CONSTANTINESCU, Horia PETRAN, Cristian PETCU

ABSTRACT

The thermography method can not be used in assessing thermal flows dissipated through building members, namely assessments of the thermal resistance of building members forming the envelope of a building. In order to prove the lack of the phenomenological support in using thermography in quantifying the so-called "heat losses" through the envelope of a building, a homogeneous wall which is part of a heated enclosure, made of concrete and provided with expanded polystyrene heat insulation, has been considered. The wall is exposed to the solar radiation. Using the INVAR program, the thermal response of the wall was assessed, under an outdoor climatic load specific to an average winter day in Bucharest, in two variants, namely:

- the heat insulation in placed in the inside of the building member,
- the heat insulation adjoins the outdoor environment.

In both of the cases the thermal resistance of the building member is the same. Based on so called outside virtual temperature, the only thermo-dynamic parameter used for thermal resistance calculation, the fact that thermography is one improper method for such type of calculation is demonstrated.

The investigation / scanning of the buildings using an infrared visualization equipment is useful in the buildings energy-related assessments either in view of issuing the energy performance certificate, or in view of analyzing the energy upgrading solutions within the energy audit. A few of the possible applications of the infrared thermography in buildings energy analysis are further presented.

Key words: Energy simulation, infrared thermo-grphy method, thermal bridges, air tightness

FOLOSIREA TERMOGRAFIEI ÎN INFRAROȘU LA EXPERTIZAREA CLĂDIRILOR

Dan CONSTANTINESCU, Horia PETRAN, Cristian PETCU

REZUMAT

Metoda termografiei în infraroşu nu poate fi utilizată ca metodă pentru evaluarea rezistenței termice a unui element de construcție, parte a anvelopei unei clădiri. În scopul demonstrării celor de mai sus se prezintă un experiment numeric având ca suport un element de construcție confecționat din beton, prevăzut cu izolare termică. Elementul de construcție este expus radiației solare. Răspunsul termic al elementului de tip perete plan a fost determinat cu ajutorul programului de calcul INVAR, în condiții de climă proprie zilei de iarnă medie a orașului București. Izolația termică este amplasată adiacent, fie mediului natural, fie mediului interior, dar rezistența termică își păstrează nealterată valoarea în ambele variante de calcul. Avându-se în vedere variația temperaturii exterioare virtuale a elementului de construcție plan, singura care permite determinarea rezistenței termice în cazul regimului nestaționar de transfer de căldură, se demonstrează imposibilitatea determinării valorii rezistenței termice exclusiv pe baza valorilor temperaturilor obținute prin măsurări în spectrul infraroșu.

Investigarea clădirii prin utilizarea termografiei în infraroșu este o metodă calitativă de expertizare. În lucrare sunt prezentate câteva cazuri în care termografia în infraroșu poate fi utilizată cu succes în expertizarea clădirilor supuse activității de modernizare energetică.

Cuvinte cheie: simularea energetică, metoda termografiei în infraroșu, punți termice, etanșarea la aer