

MULTI-PARAMETRIC ANALYSIS OF BUILDINGS – BUILDING SERVICES SYSTEM. CASE STUDIES AND APPLICATIONS IN BUILDINGS ENERGY PERFORMANCE

Dan CONSTANTINESCU, Cornel MIHĂILĂ, Cristian PETCU

ABSTRACT

The paper introduces the results of the simulations performed on an original calculation model, validated on the support of the INCERC full-scale experimental model. The calculation model is useful in the dynamic analysis of the buildings thermal behaviour as well as in assessing the heat / (sensitive) cold demand in view of maintaining the air-conditioned spaces at the required comfort temperature. The model is also able to quantify the effect of the modifications entailed by the façade upgrading works on the indoor microclimate or on the energy demand. The paper also includes examples of data obtained based on this calculation model used during the whole year or during the cooling period, in a real climate and for the dimensioning of the facility, on the whole building as well as on precincts in various locations.

The mathematical model developed is useful in the sensitivity analysis of the multi-parametric functions describing the building – building facilities system, in view of quantifying the simplifying hypotheses that may lead to the building energy performance (PEC) calculations fluidization. The mathematical model may also be used in buildings energy-related design calculations, in view of implementing innovative solutions involving improved energy efficiency values, with improved performance values as against the traditional solutions. The results of the multi-parametric analyses presented in this paper substantiate the necessity of the heat engineering analyses in the phase of buildings design as well as the transformation of the building – building facilities system design into an energy-related design interactive and convergent process involving a bijective relationship between the building members and the facilities maintaining the thermal comfort.

ANALIZA MULTIPARAMETRICĂ A SISTEMULUI CLĂDIRE-INSTALAȚII. STUDII DE CAZ ȘI APLICAȚII PENTRU PERFORMANȚA ENERGETICĂ A CLĂDIRILOR

Dan CONSTANTINESCU, Cornel MIHĂILĂ, Cristian PETCU

REZUMAT

Sunt prezentate rezultatele simulărilor pe un model de calcul original, validat pe suportul modelelor experimentale la scară naturală realizate de INCERC. Modelul de calcul este util pentru analiza dinamică a comportamentului termic al clădirilor și pentru determinarea necesarului de căldură / frig (sensibil) în vederea menținerii spațiilor climatizate la temperatura de confort impusă. De asemenea, modelul poate cuantifica modificările pe care le produc reabilitările fațadei asupra microclimatului interior sau asupra necesarului de energie. Sunt prezentate exemple de date obținute cu ajutorul acestui model de calcul, aplicat pentru întregul an sau pentru intervalul de răcire, pe o climă reală și pentru dimensionarea instalației, pe întreaga clădire și pe incinte situate în diferite amplasări.

Modelul matematic dezvoltat este util în analiza de sensibilitate a funcțiilor multiparametrice care descriu ansamblul clădire – instalații, în scopul cuantificării ipotezelor simplificatoare care pot conduce la fluidizarea calculelor PEC. În același timp, modelul matematic este utilizabil în calcule de proiectare energetică a clădirilor, în vederea implementării unor soluții inovatoare de eficientizare energetică, cu performanțe îmbunătățite fată de soluțiile clasice. Rezultatul analizelor multiparametrice prezentate în acest articol fundamentează necesitatea analizelor termotehnice în etapa de proiectare a clădirilor și transformarea proiectării clădirii și a instalațiilor aferente într-un proces interactiv si convergent de proiectare energetică, în care elementele de construcție și instalațiile de menținere a confortului termic sa aibă o relație biunivocă.