

ANALIZA COMPORTAMENTULUI TERMIC AL UNITĂȚILOR DE STOCAJ TERMIC ÎN SUBSTANȚE CU SCHIMBARE DE FAZĂ

Dan CONSTANTINESCU

REZUMAT

Unitățile de Stocaj Termic în Substanțe cu Schimbare de Fază (USTSF) sunt componente ale instalațiilor de încălzire / răcire care utilizează agenți termici proveniți de la surse convenționale sau solare. În lucrare se prezintă modele matematice specifice proceselor de schimbare de fază proprii unităților de stocaj cu formă geometrică reprezentativă, respectiv plană, cilindrică și sferică. Soluțiile analitice sunt specifice cazurilor caracterizate de variație spațial și temporală a temperaturii agentului termic, respectiv cazului cu temperatura uniformă a agentului termic. Soluțiile au forma unor funcții polinoamiale din care se reține pentru aplicații practice variația liniară a temperaturii în raport cu parametrul β , definit în raport cu căldura specifică a substanței cu schimbare de fază și cu căldura latentă de schimbare de fază. Se prezintă metode inginerești de dimensionare a USTSF în funcție de viteza medie de propagare a frontului de schimbare de fază și de caracteristica hidraulică a curgerii agentului termic.

Cuvinte cheie: schimbare de fază, căldură latentă, front de schimbare de fază, durată proces, numere criteriale

ANALYSIS OF THERMAL BEHAVIOUR OF THE THERMAL STORAGE UNITS FOR SUBSTANCES WITH PHASE CHANGES

Dan CONSTANTINESCU

ABSTRACT

The Phase Change Thermal Storage Units (PCTSU) are constituent parts of heating / cooling installations using heat carriers prepared by traditional or solar heating / cooling systems. The paper introduces the mathematical model specific to the phase change process specific for the most representative geometrical forms: plane, cylinder and spherical. The analytical solutions obtained are specific to heat transfer in the variant of heat carrier temperature variation in time and space as well as in the simplified variant of heat carrier uniform temperature. For practical reasons the solutions presented as calculus examples are approximated by linear functions of temperatures as against β parameter defined according to the substance specific heat and to the phase change latent heat. Starting from the analytical solutions the paper introduces engineering dimensioning methods of PCTSU using phase change front average propagation velocity and the heating carrier flow regime.

Key words: phase change, latent heat, phase change front, process length, dimensionless numbers