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ABSTRACT  

The Response Surface Methodology is a useful 
way for assessing the seismic performance of 
structures. A description of this methodology and 
a short introduction into the Design of 
Experiments are presented. By using the 
cumulative probability density obtained after 
10,000 Monte Carlo simulations on the response 
surface functions, it is illustrated, by a case 
study, the way in which the probability of a 
system of being in a damage state can be 
estimated. 
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REZUMAT  

Metodologia Suprafeţelor de Răspuns este o 
modalitate utilă de evaluare a performanţei 
seismice a structurilor. În articolul de faţă este 
prezentată o descriere a acestei metodologii şi o 
scurtă introducere în Planificarea 
Experimentelor. Este ilustrat, printr-un studiu de 
caz, modul în care poate fi estimată 
probabilitatea ca un sistem să se afle într-o stare 
de avariere, folosind densitatea cumulată a 
probabilităţilor obţinută după 10 000 de simulări 
Monte Carlo asupra funcţiilor suprafeţelor de 
răspuns. 
 
Cuvinte cheie: metodologia suprafeţei de 
răspuns; performanţă seismică; evaluare 
probabilistică; densitatea cumulativă de 
probabilitate 

 
1. INTRODUCTION 

1.1. Response surfaces using metamodels 
Seismic performance of structures at 

future earthquakes cannot be known with 
precision, mainly because earthquakes are 
random phenomena and the structures contain 
a series of uncertainties. 

For a building structure, the most 
important uncertainties are considered those 
concerning the materials. By using the "Design 
of Experiments" approach for the Response 
Surface Methodology, metamodels are 
obtained by selecting the parameters having 
the highest influence on the behaviour of the 
structural system.  

The metamodel is a statistical 
approximation of complex phenomena, using 
the characteristics (the input variables) that 
influence the response of a system. The 
response is estimated as a function of input 
variables. The relationship between the 
response y and the random variables ξ  of a 

system can be expressed by the following 
equation: 

 
)(ξfy =                      (1) 

 
A metamodel, )(ξg , estimating the 

relationship )(ξf  between the response and 
input variables vectors, will become: 

 
εξ += )(gy                    (2) 

 
where ε  is the total error, which is equal to 
zero when performing computer analyses. The 
estimated value of response function is: 
 

)(][ ξgyE =                    (3) 
 

The creation of a metamodel is a three-
step process: (1) choosing the input variables 
ξ  of the systems which are necessary in 
estimating the response y , (2) choosing the 
metamodel function )(ξg  and (3) acquiring the 
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data obtained after performing the analyses 
and fitting the metamodel to them.  

1.2. Response Surface Methodology  
The Response Surface Methodology 

(RSM) emerged in the '30s. Box and Wilson 
(1951) developed this methodology in the field 
of chemistry research. Nowadays the RSM is 
applied in many research fields such as: 
aerospace engineering, structural reliability, 
chemical and industrial engineering etc. 

The RSM implies obtaining response 
surfaces using a function of n variables and 
computing the polynomial coefficients (Myers 
and Montgomery, 2002), the response surface 
being a polynomial regression. If the number 
of variables is large a design of experiments 
that requires a reasonable number of analyses 
will be used. 

 

2. THE DESIGN OF EXPERIMENTS 
The Design of Experiments consists in 

choosing a set of points in which the response 
needs to be determined. Several types of 
designs are available, such as: Full Factorial 
Design (FFD), Central Composite Design 
(CCD), Box-Behnken Design, Taguchi 
orthogonal matrices etc.. The most used 
designs remain the FFD and the CCD. 

The FFD is used to decide which factors 
influence a dependent variable. The CCD is an 
option when experimental investigations are 
performed for each possible combination of 
the factors levels. 

A factor is an independent variable that 
can have several levels which are values that 
can be used for it. A factor must have at least 
two levels in order to discover its influence. 

The number of analyses to be performed 
can be substantially reduced using the 
appropriate design. 

The use of standardized or coded form of 
the variables (xi ) is much more suitable than 
their actual values (ξ i ). 

Full Factorial Design or 3k Factorial 
Design is the simplest design, where the 
variables are given three coded values: -1, 0 
and +1. In the Complete Factorial Design the 
responses are obtained using all possible 

combinations of the three values (levels) of k  
variables. The number of combinations (design 
points) will be 3kN = , which can become too 
large when many variables are considered. 

In order to obtain a sufficient degree of 
precision for the results while using a smaller 
number of design points other designs have 
been created, such as Central Composite 
Design. 

The Central Composite Design is in fact a 
2k  Full Factorial Design, the levels of the 
variables being the values -1 and +1, 
representing points on the Central Composite 
Design cube. Each variable has a 
corresponding axis with two points situated at 
the distance α  ( 1≥α ) from the center of the 
cube. 

The value of α  has influence on the 
rotatability property of CCD, which gives a 
constant variation of the response estimated at 
a fixed distance from the central point. The 
number of central points 10 ≥n . The CCD is 

rotatable if ( )2
4/1k=α . 

If 1>α , the variable considered needs to 
be evaluated at 5 levels: α− , -1, 0, +1, α+ , 
but this is not possible when the values cannot 
be outside de lower and upper bonds. In such 
cases 1=α , and the results offer a very good 
estimate. The number of total points needed 
becomes 122 ++= kN k . 

Figure 1 presents a comparative graphic 
representation of FFD and CCD, with 1=α , 
while using three variablesX 1 , X 2 , X 3 . 

 

 

Fig. 1. Graphic representation of (a) Full Factorial 
Design and (b) Central Composite Design for 1=α  

with three variables 
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3. RESPONSE SURFACE FUNCTIONS 
The model used to obtain the response 

surfaces contains the vector of variables 
considered and the vector of results from the 
analyses performed. The response surface 
functions have polynomial form.  

A drawback of RSM is the limited number 
of variables considered which is limited at 
eight when using the Design of Experiments. 
Therefore, only variables with significant 
influence on the response should be used. 

The response surface functions are usually 
first or second-degree polynomials, because 
they contain fewer terms and the number of 
analyses to be performed is reduced. 

The response surface function for a 
second degree polynomial model is: 
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where  

y is the system response; 
xi , x j  are the independent variables with 

their normalized form; 
β 0 , β i , β ii , β ij  are the unknown 

coefficients; 
ε  is the error; 
k  is the number of considered variables. 
Although the equation (4) contains 

higher-order terms, a linear regression model 
can be used to replace it: 
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where n  is the number of parameters to be 
estimated and iz  represents the variables in 

the vector that replaces the vector of initial 
variables ix  that contained quadratic terms. A 

function of three variables (x1 , x2  andx3 ) 
 

εβββββ

βββββ

++++++

+++++=

xxxxxxxx

xxxxy

322331132112
2
333

2
222

2
1113322110 ...

                                                                    

(6 ) 
 

can be transformed into a linear regression  
model: 
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The linear model can be expressed in a 

matrix form as: 
 

εβ += ZY                        (8) 
 

where: 
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The parameters of the polynomial 
function can be determined through regression 
using the least squares method and by 
selecting the values ( )bbb n 110 ,...,, −  for the 
unknown parameters ( )βββ 110 ,...,, −n , so that 

the sum of squares of the differences between 
the actual structural responses (y ) and those 
that were estimated is minimum. The least 
squares method can be applied as shown: 

 

( )∑ −
=

=
N

r
rr byybS

1

2)(ˆ)(                   (9) 

 
where S is the sum of squares function, N is 
the number of points considered in the 
experiment ( nN > ) and b is the vector of least 
squares that estimatesβ . 

By solving the following matrix equation, 
the polynomial parameters can be estimated 
(Box and Draper, 1986): 

 
( ) )'(' 1 YZZZb −=                  (10) 

 
The fitted response surface function will 

be: 
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Including the Monte Carlo simulation 

while using RSM makes the process of 
developing cumulative distribution of 
probability curves a lot less time-consuming, 
due to the fact that simulations are performed 
over the polynomial equation and not before 
running analyses.  

 

4. CASE STUDY 
A SDOF system (Fig. 2) was chosen in 

order to illustrate the use of RSM. The 
variables that describe the properties of the 
system are the mass (x1) and the stiffness (x2), 
while PGA (x3) is the control variable. The 
damping ratio of the system is 5%. 

Sets of five accelerograms, scaled at the 
chosen levels of PGA (Table 1), were used in 
nonlinear time-history analysis performed on 
the SDOF systems. 

 

 
Fig. 2. SDOF system 

 
Table 1. Input variables for the Response Surfaces 

of a SDOF system 

Random 
Structural 

Parameters    
Input 

variables 
Lower 
Bond 

Center 
Points 

Upper 
bond 

ξ1  

(kN . s2/m) 
2100 2700 3300 

Mass, M 

x1  -1 0 1 

ξ 2  

( kN/m) 
40000 50000 60000 

Stiffness, K 

x2  -1 0 1 

ξ 3 (g) 0.12 0.30 0.48 Peak ground 
acceleration, 

PGA x3  -1 0 1 

 
The recorded response of the system was 

the top displacement. 
The Design of Experiment used CCD 

resulting 15 combinations of the three 
variables (Table 2). The minimum value 
considered for PGA was 0.12g, the medium 
value vas 0.30g and the maximum 0.48g.  

The top displacement was recorded for 
each one of the time-history analyses and a 
normal distribution of its value was 
considered. 

Mean and standard deviation of the top 
displacement of SDOF system can be 
approximated by a second-degree polynomial 
expression. The polynomial coefficients can be 
determined using equation (10). 
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Table 2. Matrix of experiment and recorded 
responses 

Parameters Top displacement 
(cm) 

Case 
No. 

x1 x2 x3 
Mean, 

d̂ µ  

Standard 
deviation, 

d̂σ  

1 -1 0 1 59.97 4.35 
2 0 -1 1 60.88 6.41 
3 0 1 1 59.44 3.94 
4 0 1 -1 16.76 1.51 
5 1 1 0 37.78 3.01 
6 0 -1 -1 16.16 1.75 
7 -1 -1 0 38.19 3.44 
8 1 -1 0 41.09 5.34 
9 1 0 1 60.51 6.48 
10 0 0 0 37.81 3.08 
11 0 0 0 37.81 3.08 
12 1 0 -1 16.08 1.76 
13 0 0 0 37.81 3.08 
14 -1 1 0 37.66 4.29 
15 -1 0 -1 16.73 1.34 

 
The response surface models for the mean 

( d̂ µ ) and standard deviation (d̂σ ) of the 

response are: 
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The response surface models at various 
levels of seismic intensity were obtained by 
assessing the polynomial functions for values 
corresponding to the control variable x3, which 
represents the normalized form of PGA. 
Monte Carlo simulations were performed on 
these models generating random values for the 
variables x1 and x2, between the lower and the 
upper bonds, considering their specific 
distributions of values. The mass and stiffness 
were considered variables with a uniform 
distribution of values. 

Damage probabilities conditioned by a 
certain value of PGA, e.g. 0.24g, can be 

computed after determining the normalized 
value of x3: 
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By replacing x3=0.5 corresponding to 

PGA=0.24g, the response surface models 
become: 
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Considering a normal distribution of top 

displacements of SDOF system, 10.000 
sample values were generated for the x1 and x2 
variables and the estimated responses and their 
cumulative probability densities were 
computed (Figures 3 and 4). 

 

 
Fig. 3. Response surfaces for mean and standard 
deviation of the top displacement of SDOF system, 

as a function of mass and PGA 
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Fig. 4. Response surfaces for mean and standard 
deviation of the top displacement of SDOF system, 

as a function of stiffness and PGA 
 

 

Fig. 5. Cumulative Probability Density of top 
displacement of SDOF system, for various values 

of PGA 
 
The Cumulative Probability Density of 

top displacement of SDOF system, for various 
values of PGA is shown in Figure 5. 

Assuming that the damage threshold of 
the top displacement is 20 centimeters, the 
damage probability of the SDOF system 
subjected to an earthquake having PGA=0.15g 
is 46%. At a damage threshold of 40 

centimeters, the damage probability at a PGA 
value of 0.36g is 91% (Figure 5). 

 

5. CONCLUSIONS 
The Response Surface Methodology can 

be applied to a large variety of structures made 
of masonry, reinforced concrete, steel etc. It 
can be used with 2D as well as 3D models and 
the parameters representing the variables can 
be material characteristics, angle of seismic 
excitation at the base of the structure, the level 
of the seismic code, geometric characteristics. 

The methodology presented in the paper is 
a very useful tool in assessing the fragility of 
structures. After obtaining the cumulative 
probability density and knowing the thresholds 
of different damage states, fragility curves can 
be easily derived.  
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