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ABSTRACT

Crack analysis is vital to explain behavior of 

concrete structures. In the present study, an 

interface element with softening spring is used to 

simulate cohesive zone model (CZM) in beam to 

accurately explain the propagation for mixed-

mode crack. Modified crack closure integral 

method is implemented to model propagation of 

fracture process zone (FPZ) and stress-free 

region. An element stiffness matrix is used to 

derive forces in nodes due to normal and shear 

stress in the FPZ. Size effects such as depth of 

the beam, effective crack and initial notch are 

considered in calculation of the FPZ length and 

crack extension. By using this model, energy 

release rate is calculated directly by virtual crack 

closure technique (VCCT) by considering the 

variation of work done by external loads. The 

model decreases computational time and 

complexity for discrete cracks and provides 

accuracy as compared to other previous research.

Keywords: crack propagation, FPZ, stiffness, 

energy release rate

REZUMAT

Analiza fisur  este  în explicarea 

Pentru a

simula modelul zonei coezive (CZM) într-o 

modului de fisurare mixt. Pentru modelarea 

zonei procesului de

a zonei cu eforturi

m de considerare a 

închiderii fisurilor.

ste ut

matrice de rigiditate la nivel de element. În 

sunt considerate atât efectele dimensiunilor, 

precum ea

rata energiei degajate 

tehnica închiderii virtuale a fisurilor (VCCT), 

exterioare. Modelul utilizat contribuie la 

pentru fisuri dis

Cuvinte cheie: propagarea fisurilor, FPZ, 

rigiditate, rata energiei degajate

1. INTRODUCTION

Mechanical behavior of ductile materials 

is different from that of quasi-brittle materials,

e.g., concrete. Cracks grow in metals due to 

intersection and coalescence of micro-voids, 

while in concrete, cracks propagate when 

aggregates interlock and/or when micro-crack 

bridging occurs.

Modeling of crack in quasi-brittle 

materials is essential to improve reliability and 

to enhance load bearing. Fracture mechanics 

was employed to model tensile crack in 

concrete with strain softening behavior. It was 

first used to study crack propagation applying 

linear elastic fracture mechanics (LEFM) in 

warships in World War II (1). Later some 

studies used LEFM in concrete propagation 

analysis, but Kaplan (2) found out that 

deploying LEFM is not acceptable to solve 
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crack problems with normal concrete sizes. 

Hillerborg et al. (3) proposed the first model in 

concrete based on nonlinear fracture 

mechanics. Mentioned study introduces a 

region, often termed as fracture process zone 

(FPZ), ahead of real crack tip which leads to 

crack closure (Fig. 1). This significant and 

large zone contains micro-cracks in matrix–

aggregate, gel pores, shrinkage cracks, 

bridging, and branch of cracks that is located 

ahead of the macro-cracks. Since a significant 

amount of energy is stored in this region, a 

crack can have stable growth before peak load. 

In addition, the existence of the FPZ justifies 

the strain softening behavior in the stress-

crack opening curve after peak load. In this 

region, the interlocking crack surfaces after 

peak load contribute to a gradual decline in 

stress and prevent sudden failure (1). The FPZ 

dimension depends on the size of structure, 

initial crack, loading and material properties of 

concrete. The length of the FPZ is of special 

interest as compared to its width. The effective 

modulus of elasticity is reduced when moving 

from undamaged regions into the FPZ.

Fig.1. FPZ in front of crack with normal stress

Different approaches have been 

investigated to model discrete crack as well as 

its propagation criteria. To simulate the FPZ, 

Hillerborg et al. (3) used cohesive stress which 

is a function of crack opening. Hillerborg’s 

approach can be applied to any structure, even 

if no notch or fictitious crack exists (4).  In this 

model, as stress is a function of crack opening, 

it reaches tensile strength at the tip of the 

crack, and reduces to zero at its critical 

opening (w
c
). The amount of the area under the 

stress-crack opening curve is equal to energy 

release rate. This model, often referred to as 

cohesive zone model (CZM), was deployed to 

simulate the FPZ in normal size structures, 

using either nodal force release method or 

interface element with zero initial thickness 

technique (5).

Also, Bazant and Oh (6) modeled the FPZ 

in dummy bands as if micro-cracks are 

distributed uniformly in constant opening. This 

model, called crack band model (CBM), is 

used in finite element method with a layer 

continuum element. The CBM depends on the 

width of the element and it has been suggested 

only to model Mode I fracture (7).

Non-local continuum approach is another 

method that uses width and length for 

modeling FPZ but it has too many degrees of 

freedom, and for this reason, it is not 

computationally affordable (8). 

Other models were proposed based on 

LEFM such as size-effect model (9), two-

parameter fracture model (10) and effective 

crack model (11). Some user friendly models 

were modified using the concept of LEFM 

such as K
R
-curve method (12) regarding to 

cohesive forces in FPZ and double-K fracture 

model (13) based on using a weight function. 

Recently the double-G fracture model (14) was 

introduced based on energy release rate in

which the rate deals with Young’s modulus, 

crack length and member geometry. The last 

three methods listed have singularity problems

in boundary integrals, which need specific 

numerical methods (15).

So far, the method suggested by 

Hillerborg et al. (3) has been applied more 

widely due its practicality, accuracy and cost 

effectiveness. To model the CZM, two types 

of interface elements were deployed. One of 

the most widely used interface element is 

continuum cohesive zone model (CCZM) (e.g. 

Xie and Gersle (16)). An alternative interface 

element is the discrete cohesive zone model 

(DCZM), which is very simple to implement 

(17). The DCZM results are satisfactory 

compared to CCZM, especially for pre-

cracking phase when stiffness is selected to 

have a very large value (18). The DCZM is 

based on the idea that cohesive zone behaves 

like a spring. This point of view suggests that 
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instead of using a 2-D interface element along 

the crack path, a spring element should be 

utilized between interfacial node pairs. In the 

present investigation, DCZM is applied,

because this method reduces computational 

time and is compatible with the finite element 

method (19).

One of the methods for crack propagation 

modeling in the DCZM is the virtual crack 

closure technique (VCCT). In this method, the 

energy release rate is calculated directly, and 

then is compared with the crack resistance. 

Energy for the closing crack was calculated by 

multiplying the nodal force and the 

displacement opening (20). If the energy 

release rate is larger than the crack resistance, 

then the crack grows. Rybicki and Kanninen 

(21) for the first time suggested this method 

and Raju (22) improved the approach. This 

method is computationally inexpensive and 

provides satisfactory results (23).

Another issue in cracking modeling is 

crack direction. The initial direction of 

propagation is usually unknown. For crack 

growing, many researchers proposed to use 

approximate re-meshing algorithms. In these 

algorithms, a significant number of nodes are 

created for re-meshing, thereby resulting in 

creating large stiffness matrices, splitting some 

of the elements, and increasing computational 

complexity and time. An alternative method is 

the inter-element boundaries technique, which 

directs the crack path (24). In this technique,

the crack follows the existing inter-element 

boundaries; no re-meshing algorithm is 

needed.

From the finite element point of view, the 

stiffness of element should be properly chosen. 

In previous research, element stiffness was 

estimated from the Young’s modulus (18) to 

model FPZ propagation. In practice, this 

damage zone has a different stiffness due to 

micro-cracking, bridging, branching that 

undertake use of energy in crack growth. So it 

is significant to use more accurate stiffness 

element to simulate the FPZ in finite element 

method. This can be obtained from the 

softening curve, for that the stiffness of the 

FPZ is smaller than Young’s modulus. Also, 

when the FPZ length is fully extended and 

arrived at the maximum rate, stress-free length 

is appears in front of notch or macro-crack, 

behind FPZ, (25) which was not considered by 

previous research (26, 27, 16, 28, 5, 17, 29).

Also, to predict crack propagation, correct 

estimation of energy release rate is important. 

As it is known, energy release rate is the basic 

idea of nonlinear fracture mechanics for crack 

propagation that depends on many parameters 

such as size of structure, external load, 

element stiffness and FPZ length. Thus, it is 

necessary to consider more accurate element 

stiffness, effect of external load and FPZ 

length to evaluate energy release rate. 

In the present study, interface element 

boundaries are utilized to simulate cohesive 

cracks. This model justifies the softening 

behavior of normal stress in two dimensional 

finite element methods in beam. Modified 

crack closure integral method with softening 

spring is applied. A spring element stiffness 

matrix is used to derive forces in nodes due to 

normal and shear stress in the FPZ. Size effect 

such as depth of the beam, effective crack, 

initial notch are considered in FPZ to estimate 

energy release rate. Also, variation of FPZ 

length is utilized to model crack propagations. 

Strain energy release rate is obtained directly 

from variation of work done by externally 

applied loading. Instead of re-meshing, this 

work uses a method which finds the crack 

propagation direction by following interface 

element boundaries (24). Results for two 

examples are presented and comparisons 

between computed and experimental recent 

results are made.

2. NUMERICAL MODEL

The model used in the present study has some 

differences as compared to other available 

DCZM. It uses a softening spring stiffness 

matrix to model crack extension as FPZ length 

changes in the beam. It considers the variation 

of work done by externally applied loads to 

estimate total energy release rate.

2.1. Interface element

Modified crack closure integral method is 

applied to model CZM (19) for mixed-mode. 
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As mentioned before, the FPZ has a softening 

action due to the interlock of aggregates and 

micro-cracks. Thus, a nonlinear spring is 

proposed to place between interfacial node 

pairs (Fig. 2). In this figure, the node pairs ‘1’ 

and ‘2’ have initially the same coordinates. 

Spring softening is set at the crack tip between 

the nodes ‘1’ and ‘2’. Node ‘3’ is a dummy 

node and it is only used to illustrate the 

variation in the crack form.

Fig. 2. Spring interface element between two 

nodes

The local element stiffness matrix and the 

displacement vector related to nodes ‘1’ and 

‘2’ are given by (19):
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where 
x

k and 
y

k  are the stiffness values 

corresponding to the local coordinates x  and 

y , respectively, 
1

u  and 
2

u  are displacement 

components in x  and y directions for node 

‘1’, 
3

u  and 
4

u are displacement components 

in x  and y  directions for node ‘2’, 

respectively. In this research, the value of the 

stiffness in x direction,
x

k , is based on the 

normal stress versus crack opening curve. Fig. 

3 illustrates the concrete crack opening 

displacement (COD) that was proposed. The 

behavior initially is elastic and then it becomes 

softening. In the softening zone, there is still 

some resistance, but stress drops dramatically. 

The total crack opening can be separated into 

two components:

se

dwdwdw += (2)

where 
e

dw  and 
s

dw  are the elastic opening 

and softening opening, respectively. The 

softening parameter is defined as:

s

dw

d

S

σ

−=

(3)

This parameter indeed is the slope of 

stress in softening portion of the curve and its 

value is negative. If 
e

S  and 
S

S  are the slopes 

in the elastic and softening zones, respectively, 

then:

dw

d

S

dw

d

S
s

e

e

σσ

−== , (4)

Substituting Eq. (4) into Eq. (3), the 

softening parameter is defined as:

e

s

S

e

S

S

S

dwdw

d

S

+

=

−

−=

1

σ

(5)

Fig. 3. Concrete –COD curve

Also, the spring stiffness can be expressed 

by:
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se

s

S

d

S

d

d

B

dw

d

Bk

σσ

σ

∆

σ

∆

+

== (6)

where B is the thickness of the beam and ∆  is 

the element size. From Eq. (5) and (6), it 

results that: 


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(7)

Shear stress transfers by fracture zone in 

the tip of crack that it is required to be 

modeled by interface element. Experimental 

formulation is applied by Jeang and Hawkins 

(30) to consider aggregate interlock. The 

stiffness component in y direction is 

considered as (30):

( )[ ][ ]4.25/1

45.1

1017.17'/1262.0

−

−−

−=
u

y
eGBk

∆

(8)

where G  is the shear modulus and 'u∆  is the 

maximum crack opening displacement. Since 

Bazant and Gambarova (31) assumed that slip 

occurs opening after displacement, maximum 

crack opening displacement in Eq. (8) is 

assumed critical value, 
c

w .

The angle of orientation ( )θ  of element is 

(Fig. 4):

( ) ( )
2

13

2

13

13

cos

yyxx

xx

−+−

−

=θ (9)

where 
1

x  and 
1

y  are the coordinates of 

components node ‘1’ and 
3

x and 
3

y  are 

coordinates of components node ‘3’.

In this investigation direction of crack is 

implemented by a method in which crack goes 

after existing inter-element borders. This 

method has simple algorithm and there is no 

need for re-meshing. Crack propagation 

follows one of inter-elements (AB) or (AC) at 

which it is assumed that crack will not stop 

and intersect the main element (Fig. 4). There 

are two possible cases for the crack path; if the 

orientation angle ( )θ , is less than 

o

45 , the 

path of growth is AB, otherwise it will be AC. 

Although crack paths are non-smooth, the ones 

found with this method give a good agreement 

with correct crack path.

Fig. 4. Two possible cases for the direction of

propagation

The stiffness matrix, nodal forces and 

displacements can be changed in local 

( )yx, system to global system ( )YX,  by using 

the transformation matrix (19).

2.2. Energy release rate

The nodal force ( )
x

F  due to strain energy 

in x  direction is:

( )
31

uukF
xx

−= (10)

The crack opening displacement is 

calculated by using displacements of dummy 

nodes 3 and 4 (which do not contribute to the 

stiffness matrix) as:

75

uuu −=∆ (11)

where u∆  is the crack opening displacement 

while 
5

u  and 
7

u  are displacement components 

in  x  direction for nodes 3 and 4, respectively.

Strain energy release rate for mixed-mode 

in concrete is assumed to be the same as Mode 

I magnitude (27). Strain energy release rate for 

Mode I, due to this force based on VCCT, is 

(23):

'2BL

uF

A

U
x

∆

=

∂

∂

(12)
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where A  is crack surface area and 'L is crack 

extension.

In the present study, the variation of work 

done by externally applied loading is used to 

estimate energy release rate. If 

'

x

F  is nodal 

force due to external load in x  direction, then: 

( )

BL

uuF

A

U
x

2

31

'

−

=

∂

∂

(13)

where W  is the work done by the externally 

applied load. Therefore, the energy release 

rate,
1

G for Mode I is:

( )

'

31

'

'

22 BL

uuF

BL

uF

A

W

A

U

G
xx

I

−

−

∆

=

∂

∂

−

∂

∂

= (14)

This value is compared with critical strain 

energy release rate ( )
c

G for crack propagation. 

Eq. (14) can be applied for mixed-mode and 

multiple-crack fracture problems. 

2.3. Crack extension and FPZ length

The crack extension has an essential 

significance in fracture mechanics and is based 

on FPZ length (32). It was shown that crack 

extension has linear relation with FPZ length 

until crack opening displacement reaches to 

tc

fG /6.3  where the 
t

f  is tensile strength of 

concrete. After that, as crack extension 

increases, FPZ length decreases. Thus, crack 

extension is:

( )
0

':6.3if ahlL

f

G

u
p

t

IC

−=<<∆ (15.a)

( )
0

'

1.0:6.3if ahlL

f

G

u
p

t

IC

−−=>∆ (15.b)

where h and 
0

a  are the depth of the beam and 

the length of the initial notch. So, to estimate 

crack extension, an exact criterion for FPZ 

length is necessary. In the present study, Xu et 

al.’s approach (33) is used to evaluate FPZ 

length. Fig. 5(a) shows effective crack, in 

which 
p

l , 
0=σ

a  and a  are FPZ length, 

stress-free region length and effective crack 

length, respectively. 

        (a) (b)

Fig. 5. (a) Effective crack length, (b) Variation of 

FPZ length (33)

Fig. 5 (b) illustrates linear relationship 

between FPZ length and effective crack length 

(33). Length of FPZ increases up to the 

maximum value, h42.0 at ha 82.0= , and then 

decreases until it reaches the value h18.0 at

ha 93.0= . The advantage of the present 

model is that the effect of size on FPZ length 

based is considered on the above-mentioned 

approach. A more accurate explanation of 

propagation and crack formation must be 

considered in model such as stress-free region 

length that is formulated in finite element 

methods by:

∆×=
=

Na
0σ

(16)

where N  is the number of elements that have 

failed behind crack. When FPZ has fully 

propagated, the N  element is set to zero 

behind the crack and the crack grown along 

the respective element with considering 

direction at each step.

2.4. Computer implementation

The FEAPpv program code is developed 

for the analysis of 2-D plane stress in concrete 

(34). A nonlinear spring is implemented for 

the interface element in the Fortran User 

Subroutine FEAPpv, while the nonlinear 

dynamic relaxation method is used for the 

interface element (16). Four-node 

isoparametric elements are used for bulk 

concrete considered as linear elastic. Initially, 
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x

k and
y

k  are chosen with very large values to 

ensure that the crack is still closed. For crack 

stability, 
x

k and 
y

k are computed according to

Eq. (7) and (8). Crack does not propagate 

when the energy release rate,
I

G , is smaller 

than the critical strain energy release rate 

(
c

G ). Fig. 6 shows the major steps used by the 

presented numerical model to solve fracture in 

the beam.

Fig. 6.  Flowchart of fracture in the i-th element

3. RESULT AND DISCUSSION

Fig. 7 shows the tested plain four-point 

single-edge notched shear (SENS) beam tested 

(26). Material properties of concrete are 24800 

MPa Young’s modulus, 0.18 Poisson’s ratio 

and 4 MPa tensile strength. The thickness of 

the beam is 152 mm and the length of the 

initial notch is 82 mm. Parameter values for

fracture are mNG
c

/150= , 
c

w =0.135 mm 

and 
0

w =0.0001 mm. The initial mesh (c) is 

illustrated in Fig. 7 (b). The dimension of the 

elements is selected very small in the area of 

possible cracking to better look for results. 

Fig.7. Beam with notched shear: (a) Geometry 

(units: mm) (b) Initial mesh

Fig. 8 indicates load versus crack mouth 

sliding displacement (CMSD) curve with three 

size meshes compared with experimental 

envelop (26) and a model by Xie and Gerstle 

(16). Mesh (a) have 864 elements and 324 

interface elements, mesh (b) have1026 

elements and 508 interface elements, and (c) 

have 1862 elements and 875 interface 

elements. 

Fig. 8. Load-CMSD Curves for Shear Beam

The approximate matching of the three 

curves demonstrates the independence of the 

model from mesh size and shows the model 

has fast convergence. It can be seen from the 

figure that peak loads are close to each other, 

although mesh size is changed.

As seen, the numerical results are logical 

regarding to experimental envelope. In the 

elastic part, the results rest almost on the 

midpoint of previous experimental. However, 

peak load obtained from the numerical method 
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is slightly shifted to right upper limit of the 

envelope. The difference between proposed 

model and experimental data is inevitable 

since the behavior of concrete is assumed 

linear elastic in fracture mechanics but in fact 

it is nonlinear plastic and compression 

cracking is also ignored.

The peak loads have 5.4% difference 

compared with experimental ones. It is seen 

that after peak load, the curves in the softening 

zone (up to 60 KN) are closer to experimental 

data than the previous numerical (16) model,

which is slightly more brittle thereafter. In the

softening zone after 60 KN, present model 

shows more agreement in terms of ductility 

observed in experimental than previous study. 

It is may be because that stress-free zone at the

tip of the notch was not considered in 

modeling.

Fig. 9 shows the predicted crack path in 

mesh (c) which is compared with test. It 

should be noted that, crack path is a smooth 

curve although in present study crack path 

consists of two straight line. It can be seen that 

prediction of crack path in mesh (c) is very 

close to the experimental (up to 95%).

Fig. 9. Crack path in the shear beam

Fig.10. Half of the RC Beam (Unit: mm)

The second example is a reinforced 

concrete beam with simple supports (Fig. 10) 

which was tested by Bresler and Scordelis 

(35).

The geometry of the RC beam is 4572 mm 

length, 305.8 mm thickness. Material 

properties are: 24000 MPa elastic module, 

0.18 Poisson ratio for concrete and 200 GPa 

elastic module, 0.3 Poisson ratio, 3290 

cross-section area, 552 MPa yield strength for 

steel. Tensile strength for concrete is 2.8 MPa 

and critical crack opening displacement is 

0.152 mm. A two-node truss element is used to 

model steel bars with perfect plastic behavior

and the beam is not reinforced with stirrups. 

The analysis condition is considered plane 

stress and half of the beam is simulated for 

modeling in symmetry condition. Bond-slip 

between longitudinal bars and concrete is 

perfect. Load versus deflection at the middle

of the beam in present study is compared with 

experimental results (35) in Fig. 11.

Fig.11. Load-deflection at the mid-span of the 

model and experimental (35)

Fig. 11 shows that the results are close to 

experimental data. It can be seen that the 

stiffness in the present study is slightly greater

than that from experimental observation (with 

approximately 10 percent). This error may be 

acceptable because compression cracks, 

nonlinear behavior of bulk concrete and plastic 

deformation are neglected in fracture 

mechanics. Fig. 12 (a) shows crack patterns at 

load equal to 285 KN in the experimental 

study (35) and Fig. 12 (b) illustrates crack 
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paths in the present study. Flexural cracks 

occur under load initially. Effective crack 

length is 10.2 mm and occurs at load 54 KN in 

the vicinity of the mid-span and becomes 

262.7 mm at 100 KN load. Shear cracking

starts at about 170 KN load at the support and 

grows upwards as load increases. 

Fig.12. Crack predicted at 285 KN load

(a) experimental (35); (b) present model

The experimental model showed 13 

cracks, including flexural and shear cracks

which, except the first one, are inclining 

toward the load, while in the present model 11 

cracks were predicted, in which two cracks 

near mid-span don’t detour.

4. CONCLUSIONS

The present investigation proposes a 

simple approach to simulate cohesive 

cracking. An interface element with a 

softening spring is used to simulate CZM in 

beam to accurately explain crack propagation 

for mixed-mode cracking. A modified crack 

closure integral method is implemented to 

simulate the development of FPZ and the 

stress-free region length of fracture without 

re-meshing. An accurate element stiffness 

matrix is applied to derive forces in nodes due 

to normal and shear stress in this zone. Depth 

of the beam, effective crack and initial notch 

are considered in FPZ and in crack extension

assessment. By using this model, the energy 

release rate is calculated directly by VCCT, by

considering the variation of work done by 

externally applied loads. The model is simple, 

accurate, efficient, with fast convergence and 

capable to accurately model the crack growth. 

The model decreases computation time and 

complexity for discrete cracks and provides 

accuracy by comparison with previous 

research.
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