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ABSTRACT

The paper is devoted to some methodological
problems raised by the analysis of hazards due to
variable actions having implications for the risk of
damage to structures. The basic recurrence model
used is that of Poissonian stochastic processes.
The techniques of calibration of specific recurrence
characteristics are discussed, adopting a critical
point of view versus statistical analyses relying
exclusively on data like annual maxima. The
adoption of some types of distributions is critically
discussed, from the point of view of their
compatibility with the Poissonian model referred
to. Only the Gumbel and Fréchet distributions are
accepted as adequate for the purpose adopted.
Starting from their common properties an
unbounded family of distributions is proposed.
This family makes it possible to adopt calibrations
providing an approximation of unlimited closeness
to observation samples. The case of a pluri-
dimensional characterization of the randomness of
observation data is then tackled, considering as an
illustrative case the directional statistical analysis
of sequences of wind events. Some specific
expressions are proposed for the directional
analysis, leading to a good approximation of
observation samples. A case study relying on the
expressions is then presented.

Keywords: actions on structures, hazard,
Poissonian processes, extreme value distributions

REZUMAT

Lucrarea este dedicată unor probleme metodo-
logice ridicate de analiza hazardurilor datorite
acţiunilor variabile care au implicaţii pentru riscul
de avariere a structurilor. Modelul de bază utilizat
este cel de proces stochastic poissonian. Sunt
discutate tehnicile de calibrare a caracteristicilor
de recurenţă specifice, adoptându-se o poziţie
critică faţă de analizele statistice care au drept obiect
exclusiv parametri ca maximele anuale. Este
discutată critic adoptarea anumitor tipuri de
distribuţii, prin prisma compatibilităţii lor cu modelul
poissonian menţionat. Sunt reţinute (dintre
distribuţiile clasice), drept modele adecvate,
distribuţiile Gumbel şi Fréchet. Pornind de la
proprietăţile comune ale acestora, este propusă în
continuare o familie (nemărginită) de distribuţii care
generalizează distribuţiile clasice menţionate,
această familie permiţând o mulare oricât de fină pe
ansamblurile de date de observaţie. În continuare,
este analizat cazul unei caracterizări pluri-
dimensionale a caracterului aleator al datelor de
observaţie, considerându-se, ca exemplu ilustrativ,
problematica analizei statistice direcţionale a
succesiunii cazurilor de vânt. Sunt propuse, pentru
analiza direcţională, expresii specifice, care permit
o bună aproximare a ansamblurilor de date de
observaţie. Este prezentat un studiu de caz, având
la bază utilizarea distribuţiilor propuse.

Cuvinte cheie: acţiuni, hazard, procese poissoni-
ene, distribuţii de valori extreme

1. INTRODUCTION
The paper is devoted to some important aspects

of the characterization of variable actions and of
corresponding hazards to structures. Cases of
occurrence of these actions at levels of severity that
are relevant for structural safety and risk are dealt
with. Such cases are singled out and their
characterization is dealt with. On the other hand,
the recurrence of actions at various severity levels is
dealt with too, in order to characterize corresponding
hazards.

A case of occurrence of a certain action may
be characterized in various terms, in a more or less
detailed manner, depending upon the aspects of
interest considered. This problem is briefly dealt with.
The first approach is based on a scalar (or 1D)
characterization. Thereafter a more general, nD,
approach is dealt with and an illustration,
corresponding to the consideration of wind speed,
together with its azimuthal orientation, is presented.

The complementary problem dealt with is
represented by the analysis of recurrence
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characteristics of actions. The use of stochastic
processes as basic recurrence models is adopted.
As it is well known, the Poissonian model is largely
used in order to investigate the features of sequences
of cases of occurrence of actions like the seismic or
meteorological ones. Even if this model is in
disagreement with some features of the sequences
referred to and of features of phenomena or of
originating processes, like tendency to annual
periodicity of occurrence of meteorological actions
or consequences of the phenomenon of energy
accumulation lying at the basis of earthquake
generation, it is used especially due to some hard
facts. On one hand, the outcome of its use appears
to be in many cases satisfactory in order to quantify
hazards for relatively long time horizons. On the
other hand, the calibration of more sophisticated
models is quite seldom feasible, due to the limits to
the observation data at hand, which often raise
difficulties even for the calibration of the
characteristics of Poissonian processes.

Due to the reasons mentioned, the acceptance
of the Poissonian model lies at the basis of following
developments. Their main objective is to propose
some tools intended to contribute to a more
consistent approach to hazard analyses, to be in
agreement with the basic requirement of invariance
of results with respect to some processing
conventions.

The paper is based on the developments of [7],
to which some additional developments and
explanations are added.

2. ANALYTICAL DEVELOPMENTS

2.1. General

The model adopted in order to characterize one
case of occurrence of a variable action corresponds
to sequences of occurrence cases of durations that
are short in comparison with exposure durations
which are relevant for the analysis of the risk affecting
structures. So, the formulations adopted correspond
implicitly to an ideal situation, for which the duration
of application during an occurrence case is negligible.

 The space of parameters characterizing actions,
q, considered for the beginning, is mono –
dimensional, while a random variable Q, which can

take various values q for the successive cases of
occurrence, is used. Such spaces lie implicitly at the
basis of most code provisions, where hazard
characteristics are related to one single parameter,
as a rule an intensity or amplitude type parameter.

It is nevertheless of interest to push this approach
to a multi – dimensional characterization of the
randomness of the parameters characterizing a case
of occurrence. Some developments in this sense are
presented in subsections 2.6, 2.7, 2.8.

2.2. Review of some basic characteristics
and relations in case of 1D
characterization of randomness

The basic recurrence characteristics and the
basic relations between them, as appropriate for the
case of Poissonian processes, are reviewed
subsequently. They are to be used in the quantification
of recurrence of actions under the hypotheses
accepted. A (scalar, random) severity measure, Q,
is used.

The basic recurrence characteristics used
throughout the paper are:

- a n expected occurrence frequency
density for Q = q, denoted nQ(q),

- an expected number of occurrence cases
characterized by values Q  q, during an
observation, or exposure, time interval T,
denoted NQ (Q  q, T), where


 
q QQ qqnTTqQN d)(),( (2.1)

(e.g. : NQ (Q  q, 1 yr.) is the yearly expected
occurrence frequency of values Q q);

- an expected occurrence return period,
TQ (q), given by the expression:

 
 11 ]/),([]d)([)( TTqQNqqnqT Qq QQ

),(/ TqQNT Q  (2.2)

- probabilities of non-occurrence and non
- exceedance, PQ0 (q, T), or, more general,

- probabilities of m-time occurrence or
exceedance, PQm (q, T), for a time horizon T,
where

)],([exp),(0 TqQNTqP QQ  (2.3)
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 )],([exp),( TqQNTqP QQm

!/)],([ mTqQN m
Q  (2.3)

(where m = 0, 1, 2, …), with the obvious condition

1),(,0  
m Qm TqP (2.4)

Of course, the time related parameters T and
T Q (q) will be expressed in terms of the same time
units, usually in years.

Such a simple, 1D, approach cannot account,
of course, for the multi-dimensional variability of
actions and it should be surpassed, at least from a
theoretical viewpoint, in order to reach a more
detailed characterization of randomness. An example
of possible extension in this view is presented, as
mentioned before, in subsections 2.6, 2.7, 2.8.

2.3.  Some consequences for extreme
value distributions

Two widely used, by now classical, distributions
of maxima for random variables, are considered here
as a starting point: the Gumbel and the Fréchet
distributions. According to the author’s views, they
are the single distributions, widely used to date, that
are compatible with a recurrence representation
corresponding to the basic Poissonian process
model. As a counterexample, the lognormal
distribution, which is also used in this field, is not
compatible with this basic model. The Gumbel and
the Fréchet distributions will be considered here as
non-occurrence and non-exceedance probabilities
(which shall be explicitly related to some reference
exposure horizon T, in order to make sense):

- the Gumbel distribution (or the Type I
extreme value distribution) is:

)]}()([exp{exp),(),( )(
0

)( uqTTqPTqF I
Q

I
Q 

(2.5)
( w h e r e  (T) > 0);

-  the Fréchet distribution (or the Type II
extreme value distribution) is:

  }]/[{exp),(),( )()(
0

)( TkII
Q

II
Q uqTqPTqF

)]}ln(ln)([expexp{ uqTk  (2.6)

(where k (T) > 0, q > 0).

Note that these two distributions are closely
related in case one looks at the last variant of
expression (2.6). This remark suggests an attempt
of generalization, namely the proposal of a more
general kind of distribution,

 ),(),( )(
0

)( TqPTqF S
Q

S
Q

)]}()([expexp{  uqT

(2.7)

(where α (T) > 0, whileφ < q > is a monotonically
increasing function of q). Note here also that in case
of the distribution (2.5), one has an expression
φ < q > = q, while in case of the distribution (2.6),
one has an expression φ < q > = ln q.

The consideration of such a more general kind
of distribution provides considerably improved
possibilities to fit observation data, as compared to
the constraints created by the exclusive use of the
classical distributions (2.5) and (2.6). A way to
calibrate the newly introduced function deserves
therefore to be examined. As an example, a simple
possible solution of interest (which directly
generalizes the Gumbel variant and is used in
connection with the case study of Section 3) is

φ < q > = qβ (2.8)

(where β > 0). The higher the value β is, the less
conservative the distribution (2.7) will be, i.e. the
lower the probabilities of occurrence & exceedance
of the most severe values q will be.

Comment: the formulation adopted, where two
parameters explicitly depending on the exposure
duration T, α (T) and k (T) respectively, appear,
anticipates some implications of subsequent
developments.

Given the expression (2.3), the expected
numbers of occurrence cases corresponding to the
expressions (2.5), (2.6) and (2.7) will be respectively

)]()([exp),()( uqTTqQN IQ  (2.9)

  )()( ]/[),( TkII
Q uqTqQN

)]ln(ln)([exp uqTk  (2.10)

)]()([exp),()(  uqTTqQN SQ

(2.11)
and, more specifically, in case the expression (2.8)
is adopted,



6 CONSTRUCŢII – Nr. 1 / 2011

)]()([exp),()(   uqTTqQN SQ

(2.12)

Note that the well known Richter earthquake
magnitude recurrence law [2], rewritten by using the
notations introduced previously,

bqTaTqQN RQ  )(),(lg )( (2.13)

may be made equivalent to a Gumbel distribution.
Note also the relation

a (T) = a (1) + lg T, (2.14)

which is of interest in case one wants to change the
reference time interval of recurrence characteristics
(e.g.: in case of passage from T = 1 yr. to T = 100
yrs.).

2.4. Discussion on the calibration of
hazard characteristics

The developments presented are connected
with methodological consequences. On this basis, it
turns out that a reasonable way to calibrate the
recurrence characteristics will consist of a direct
calibration of the function NQ (Q  q, T). All other
recurrence characteristics referred to in Section 2.2
can be easily determined on this basis. The results
obtained in this way are based on the whole of
observation data at hand and do not depend on an
artificial convention, like e.g. exclusive consideration
of yearly maxima, which is rather usual. The
exclusive consideration of yearly maxima, widely
applied due to the developments of [3], frequently
referred to as Gumbel statistics, and implicitly
accepted in some reference publications like [1] or
[8], leads to questionable results. E.g., the
consideration of statistics of monthly maxima would
lead to different results. So, a natural basic
requirement, namely that of invariance of the
outcome on calibration of hazard characteristics, is
not satisfied in this way.

2.5 Some additional consequences for
the techniques of calibration of
recurrence characteristics

In case of adoption of a distribution (2.7), two
expressions that are useful in order to determine

recurrence characteristics may be derived. In case
one considers two reference values of q, q1 and q2
respectively (where usually q1 < q2) for which one
knows the corresponding return periods, T1 =
=TQ (q1) and T2 = TQ (q2) (e.g. in case of wind 10
years and 50 years, respectively) and one wants to
determine the return period TQ (q) for some other
value, q, on the basis of these data, one obtains the
relation (recommended primarily for interpolation)

ln T Q (q) = [(φ < q2 > – φ < q >) ln T1 +
+ (φ < q > – φ < q1 >) ln T2] /

/ (φ < q2 > – φ < q1 >) (2.15)

In the opposite sense, in case one wants to
determine the value q corresponding to a return
period of interest T, one obtains the relation

φ < q > = [(ln T2 – ln T) φ < q1 > +

(ln T – ln T1) φ < q2 >] / (ln T2 – ln T1)
(2.16)

2.6. Some steps towards a multi –
dimensional randomness
characterization in
recurrence analysis

Returning to the closing remarks of Subsections
2.1 and 2.2, some developments oriented towards
hazard characterization for actions for which a
multi – dimensional randomness characterization is
required, are presented. The author discussed this
problem in a rather general, formal, frame in
[4, 5, 6].

Assume now, instead of the 1D space
considered in subsection 2.2, the definition and use
of a space of a finite number of dimensions, having
the coordinates qj (j = 1, …, J), which can be referred
to as a space of macroscopic action characteristics
qj. This space is, of course, not really a vectorial space
(among other, several coordinates that are proper to
this space cannot take negative values). In this latter
variant the expected frequency density nQ (q) of
relations (2.1) etc. would be replaced by an expected
frequency densitynQ(qj), whereqj are the coordinates
of the space, while the expected frequency
NQ (Q  q, T) would be replaced by an expected

frequency of cases ),(,)( TNq Qj  , where is
a (closed) domain of the space of coordinates qj.
Instead of the expression (2.1) one has now

H. Sandi
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  d)(),)(( jQjQ qnTTqN , (2.17)

while instead of the first variant of expression (2.2)
one has, for the return period of occurrence of events
with (qj)

 


1]d)([)( jQQ qnqT

 1]/)),)(([ TTqN jQ

)),)((/ TqNT jQ  (2.18)

The expressions (2.3) and (2.3) will be
replaced in this case by

]),)(([exp)),)((0 TqNTqP jQjQ 

(2.19)
and

 )),)(( TqP jQm

!/)]),)(([]),)(([exp mTqNTqN m
jQjQ 

(2.19)
while the condition (2.4) will become

m
0,  PQm ((qj)  ), T)  1 (2.20)

2.7. A case of 2D recurrence analysis:
the directional analysis of
recurrence of wind cases

This time, a specific problem is dealt with,
namely the consideration of wind directionality.

In this frame, a case of incidence of wind action
will be characterized by two parameters:

- an intensity measure,q (usually, a reference
wind speed value);

- a directionality measure, θ (usually, an
azimuthal angle).

Due to pragmatic reasons, the parameter θ
should be discretized asθk,correspondingly lumping
observation data, since there will never exist data to
support in a satisfactory way a continuous directional
characterization. The number k could vary from 1
to 8 or from 1 to 16, depending upon the amount
and accuracy of observation data.

Returning to Subsection 2.2, attention is to
be paid, as a starting point, to the recurrence

characteristics nQ (q) and NQ (Q  q, T). The
corresponding characteristics to be used for a
two – dimensional approach will be:

- an expected directional occurrence
frequency density, denoted nQ

(2)
k (q);

-  an expected directional number of
occurrence cases for a time interval T,

),()2( TqQN
kQ
 .

Two corresponding basic relations can
represent a starting point for directional hazard
analyses:

nQ (q) = Σk nQ
 (2)

k (q) (2.21)
and

 
k

kQQ TqQNTqQN ),(),( )2(

(2.22)

Further relations, analogous to those of
Subsection 2.2, can be developed according to
needs.

2.8. Additional methodological elements
concerning the analysis of the
recurrence process of wind cases,
under consideration of the azimuthal
direction of wind flow

The problem of selecting of a suitable type of
expressions of the distributions to be used, to fit the
requirements of statistical analysis of the recurrence
process under consideration of the azimuthal
direction of wind flow, is now examined. The basic
adequacy criterion considered is to satisfy the
relations (2.21) and (2.22) without allowing any
residues. This condition is quite strongly restrictive.

A type of function corresponding to the
requirement formulated is some power of q, qk, and,
consequently, also some linear combination of such
functions. Keeping in view the general tendency
observed while performing recurrence analyses,
namely the monotonic decrease of functions nQ (q)
and NQ (Q  q, T), the powers k should be strictly
negative. A suitable solution, given its simplicity, is a
linear combination,

NQ (Q  q, T) = Σj cj q– aj (2.23)

and, consequently,

On the analysis of recurrence characteristics of variable actions
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nQ (q) = a Σj cj j q– aj – 1 (2.24)

where a is a positive constant (which can be equal
to 1 in case there are no reasons to adopt a non-
integer value), while the sequence of numbers k is a
(relatively short) segment of the sequence of natural
numbers.

A passage to directional recurrence analysis,
combining the developments of relations (2.21) and
(2.24), or (2.22) and (2.23) respectively, leads to
double addition, with respect to the indices j and k.

3.  A CASE STUDY

The case study presented concerns the
recurrence of relatively strong wind occurrence cases
at the location of the meteorological station of the
City of Ploieşti, in Romania. The time interval for
which data available were used is from 1966 to 2001,
i.e. a total length of 36 years. This was the most
appropriate interval from the point of view of
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Fig. 3.1. Cumulated number of events (reduced to
one year) and estimated recurrence characteristic

lg NQ (Q  q, 1 yr.) for wind speed in Ploiesti

homogeneity of the observation techniques used. The
approach presented in previous section was applied.
The results presented are related only to the analysis
of recurrence irrespective of wind directionality.

A look at the data concerning the recurrence
of peak gust wind velocities led to the conclusion
that, at least for the domain covered by the data at
hand, an expression (2.8) ofφ <q> would be fairly
appropriate, as shown subsequently.

The cumulative number of observed cases of
occurrence, normalized, or reduced to a one year
time interval, is presented in graphic terms in Fig.
3.1. As shown there, it turned out that a value
β = 2.0, as adopted in order to derive the recurrence
characteristic lg NQ (Q > q, T), appears to be
satisfactory. In order to determine the value ofα, it
was stated, on the basis of data at hand, that

1)yrs.36,s/m33( QNQ (3.1)
and

329)yrs.36,s/m13( QNQ (3.2)
which led to the condition

5172.2)1/329(lg)1333( 22 
(3.3)

and to the value

002736.0)1333/(5172.2 22 
(3.4)

So, the expression of lg NQ (Q  q, T) became

lg NQ (Q > q, 1 yr.) =

= α × (332 – q2) – lg (36 yrs.) =

= 0.002736 × (1089 – q2) – 1.5563
(3.5)

i.e.
lg NQ (Q  q, T) =

= 0.002736 × (1089 – q2) –  1.5563 + lg T,
(3.5)

 ),( TqQNQ

]lg5563.1)1089(002736.0[10 2 Tq 
(3.5")

A plot of this outcome is given in Fig. 3.1.
The probability function corresponding to an

exposure duration T, FQ
(S) (q, T), will be

0
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Fig. 3.2. Probability function of wind speed
 in Ploiesti, for various exposure durations T, FQ

(S) (q, T)
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 )],([exp),()( TqQNTqF Q
S
Q

]}lg5563.1)1089(002736.0[10exp{ 2 Tq 
(3.6)

and is plotted in Fig. 3.2, alternatively for exposure
durations T of 1, 10 and 100 years.

Obtaining the value β = 2.0 means that the
distribution derived is less conservative than the
classical Gumbel distribution (for which β = 1.0),
i.e. that it leads to lower occurrence / exceedance
probabilities for the most severe wind speed values.

4. CONCLUDING CONSIDERATIONS

The developments presented make it possible
to derive following conclusions:

1. It is recommendable to carry out hazard
analyses using as a starting point the structure of
relations that are proper to Poissonian processes.
The appropriate way to proceed is to calibrate the
expected number of occurrence cases characterized
by values Qq, during an observation, or exposure,
time interval T, denoted NQ (Q  q, T).

2. The adoption of the use of functions
φ < q >, as introduced in Subsection 2.2, appears
to be suitable. A calibration on the basis of
observation data is easily feasible and leads to
invariant results. Of course, the quality of results will
depend on the quality of basic information data
available.

3. There are situations requiring exceeding the
1D approach. A case where this requirement is
obvious is that of analysis of recurrence of cases of
wind, accounting for directional distribution too.

4. There exist, of course, also other situations
in which a multi-dimensional approach of hazard
characterization may be of interest. The
developments of subsection 2.6 provide some
guidelines in this sense.
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