EXPERIMENTAL VALIDATION OF THE BUILDINGS ENERGY PERFORMANCE (BEP) ASSESSMENT METHODS WITH REFERENCE TO OCCUPIED SPACES HEATING

Cristian PETCU, Dan CONSTANTINESCU, Horia PETRAN*

This paper is part of the series of pre-standardization research aimed to analyze the existing methods of calculating the Buildings Energy Performance (PEC) in view of their correction of completing. The entire research activity aims to experi-mentally validate the PEC Calculation Algorithm as well as the comparative application, on the support of several case studies focused on representative buildings of the stock of buildings in Romania, of the PEC calculation methodology for buildings equipped with occupied spaces heating systems. The targets of the report are the experimental testing of the calculation models so far known (NP 048-2000, Mc 001-2006, SR EN 13790:2009), on the support provided by the CE INCERC Bucharest experimental building, together with the complex calculation algorithms specific to the dynamic modeling, for the evaluation of the occupied spaces heat demand in the cold season, specific to the traditional buildings and to modern buildings equipped with solar radiation passive systems, of the ventilated solar space type.

The schedule of the measurements performed in the 2008-2009 cold season is presented as well as the primary processing of the measured data and the experimental validation of the heat demand monthly calculation methods, on the support of CE INCERC Bucharest. The calculation error per heating season (153 days of measurements) between the measured heat demand and the calculated one was of 0.61%, an exceptional value confirming the phenomenological nature of the INCERC method, NP 048-2006.

The mathematical model specific to the hourly thermal balance is recurrent – decisional with alternating paces. The experimental validation of the theoretical model is based on the measurements performed on the CE INCERC Bucharest building, within a time lag of 57 days (06.01-04.03.2009). The measurements performed on the CE INCERC Bucharest building confirm the accuracy of the hourly calculation model by comparison to the values provided by measurements and to those provided by the monthly calculation (NP 048-2006). The deviations of 1.45% and 2.2% respectively validate the hourly calculation model, as they actually have no physical significance. The report presents a phenomenological analysis of the building transfer functions synthesized as $t_{\rm ev}$ (τ), functions which attest their pheno-menological objectivity in macro and hourly terms.

The case studies completing the calculation models experimental validation emphasize unacceptably large differences between the results provided by the use of standardized calculation methods (Mc 001 / 2-2006 and SR EN 13790:2009) and those specific to the methods referred to in this report, experimentally validated.

Key-words: heat demand calculation, hourly thermal balance, glazing rate, heat demand, collective dwelling building, office building

Lucrarea de fată se înscrie în seria de cercetări prenormative al căror scop îl reprezintă analiza metodelor actuale de calcul al Performantelor Energetice ale Clădirilor (PEC), în vederea corectării sau completării acestora. Scopul cercetării în ansamblu îl reprezintă validarea experimentală a Algoritmului de Calcul al PEC și aplicarea comparată, pe suportul unor studii de caz vizând clădiri reprezentative pentru fondul construit din România, a metodologiei de calcul al performanței energetice a clădirilor dotate cu instalații de încălzire a spațiilor ocupate. Obiectivele lucrării sunt reprezentate de testarea experimentală a modelelor de calcul cunoscute până în prezent (NP 048-2000, Mc 00-2006, SR EN 13790:2009), pe suportul clădirii experi-mentale CE INCERC București, alături de algoritmii complecși de calcul specifici modelării dinamice, pentru evaluarea necesarului de căldură al spațiilor ocupate în sezonul rece, propriu clădirilor clasice și clădirilor moderne dotate cu sisteme de utilizare pasivă a radiației solare, de tip spațiu solar ventilat.

Se prezintă programul de măsurări efectuate în sezonul rece 2008-2009 și prelucrarea primară a datelor măsurate precum si validarea experimentală a metodelor de calcul lunar al necesarului de căldură. Eroarea de calcul la nivelul sezonului de încălzire (153 de zile de măsurări) între necesarul de căldură măsurat și cel calculat a fost de 0,61 %, valoare excepțională care confirmă caracterul fenomenologic al metodei INCERC, NP 048-2006.

Modelul matematic propriu bilanţului termic orar este unul de tip recurent-decizional cu pași alternativi. Validarea experimentală a modelului teoretic se bazează pe măsurările efectuate în clădirea CE INCERC București, pe suportul unui interval de 57 de zile (06.01-04.03.2009). Măsurările efectuate în clădirea CE INCERC București atestă corectitudinea modelului de calcul orar prin comparare cu valorile rezultate din măsurări și cu cele rezultate din calculul lunar (NP 048-2006). Abaterile de 1,45 %, respectiv de 2,2 %, validează modelul orar de calcul, neavând practic nici o semnificație fizică. Lucrarea prezintă o analiză fenomenologică a funcțiilor de transfer ale clădirii sintetizate sub forma funcțiilor t_{ev} (τ), care atestă obiectivitatea fenomenologică a acestora la nivel macro, dar și la nivel orar.

Studiile de caz care completează validarea experimentala a modelelor de calcul, pun în evidență diferențe inacceptabil de mari între rezultatele oferite de aplicarea metodelor de calcul standardizate (Mc 001 / 2-2006 și SR EN 13790:2009) și cele proprii aplicării metodelor care fac obiectul lucrării de față, validate experimental.

Cuvinte cheie: calculul necesarului de căldură, bilanț termic orar, raport de vitrare, necesar de căldură, clădiri de locuit colective, clădiri de birouri

^{*}National Building Research Institute – INCERC, Bucharest, Romania; e-mail: cpetcu@incerc2004.ro

1. GENERAL PRESENTATION

This papaer is focused on the analysis of the PEC calculation methods currently used and on the experimental validation of the PEC Calculation Algorithm, as well as on the compared application, based on case studies on representative buildings for the stock existing in Romania, of the methodology of calculating the energy performance of buildings equipped with occupied spaces heating systems.

The paper focuses on the experimental testing of the calculation models known so far (NP 048 / 2000, Mc 001 / 2006, SR EN 13790:2009), on the support of the CE INCERC Bucharest experimental building, as well as on the testing of the complex calculation algorithms specific to dynamic modeling, for the assessment of the occupied spaces heat demand in the cold season, specific to the traditional buildings and to the modern ones equipped with solar radiation passive systems, of the ventilated solar space type.

The support of the experimental validation of the heat demand monthly calculation is presented – the INCERC Bucharest experimental building equipped with ventilated solar space (CE). The geometrical and heat engineering characteristics of the building envelope are presented as well as the specific equipments (heating system, ventilated solar space), the measurement chain of the experimental building and the 2008-2009 cold season experimental schedule. The schedule of the measurements performed in the 2008-2009 cold season is also presented as well as the primary processing of the measured data and the experimental validation of the heat demand monthly calculation methods, on the support of CE INCERC Bucharest, with reference to the heat consumption calculation methods included in the local regulations and in the European standards taken over as national standards concerning the energy expertise and the buildings energy audit (Mc 001 / 2-2006 and NP 048-2002, updated in 2006, further called NP 048-2006).

The paper presents the theoretical substantiation of the mathematical model specific to the hourly thermal balance proposed as a calculation method alternative to the method of SR EN 13790:2009, in normal heating conditions, with reference to the evolution in time of the heat demand and of the

1. PREZENTARE GENERALĂ

Lucrarea de față are ca scop analiza metodelor actuale de calcul al Performanțelor Energetice ale Clădirilor (PEC) și validarea experimentală a Algoritmului de Calcul al PEC, precum și aplicarea comparată, pe suportul unor studii de caz vizând clădiri reprezentative pentru fondul construit din România, a metodologiei de calcul al performanței energetice a clădirilor dotate cu instalații de încălzire a spațiilor ocupate.

Obiectivul articolului îl reprezintă testarea experimentală a modelelor de calcul cunoscute până în prezent (NP 048/2000, Mc 001/2006, SR EN 13790:2009), pe suportul clădirii experimentale CE INCERC București, alături de testarea algoritmilor complecși de calcul specifici modelării dinamice, pentru evaluarea necesarului de căldură al spațiilor ocupate în sezonul rece, propriu clădirilor clasice și clădirilor moderne dotate cu sisteme de utilizare pasivă a radiației solare, de tip spațiu solar ventilat.

Se prezintă suportul validării experimentale a metodelor de calcul lunar al necesarului de căldură - casa experimentală INCERC București dotată cu spațiu solar ventilat (CE). Sunt evidențiate caracteristicile geometrice și termotehnice ale anvelopei clădirii și dotările specifice (instalația de încălzire, spațiul solar ventilat), lanțul de măsurare aferent clădirii experimentale și programul experimental din sezonul rece 2008-2009. De asemenea, se prezintă programul de măsurări efectuate în sezonul rece 2008-2009 și prelucrarea primară a datelor măsurate impreuna cu validarea experimentală a metodelor de calcul lunar al necesarului de căldură, pe suportul CE INCERC Bucuresti, cu referire la metodele de calcul al consumului de căldură cuprinse în reglementările autohtone și în standardele europene preluate ca standarde naționale, referitoare la expertiza energetică și auditul energetic al clădirilor (Mc 001/2-2006 și NP 048-2002 cu modernizări în anul 2006, denumit în continuare NP 048-2006).

Lucrarea prezintă fundamentarea teoretică a modelului matematic propriu bilanțului termic orar propus ca metodă de calcul alternativă metodei din SR EN 13790:2009, în condiții curente de încălzire, cu referire la evoluția temporală a necesarului de căldură și al temperaturilor interioare semnificative.

significant indoor temperatures. The model is recurrent – decisional with alternating paces. The experimental validation of the theoretical model by the measurements performed on the CE INCERC Bucharest building within a time lag of 57 days (06.01-04.03.2009) is also presented.

Two case studies are presented in the end, concerning the use of the space heating energy demand and consumption calculation models, on the support of two buildings: an apartment building (condominium) and an office building; the PEC values differences are emphasized, which are determined based on the experimentally validated calculation models and the standardized ones, which question the applicability of the standardized calculation methods.

2. EXPERIMENTAL VALIDATION OF THE HEAT DEMAND MONTHLY CALCULATION METHODS – CE INCERC Bucharest

2.1. Presentation of CE INCERC Bucharest

The experimental building located at INCERC Bucharest is an individual dwelling building, ground floor, with a sloped roof, no basement, first designed and built as an experimental building for BCA (autoclaved lightweight concrete) structural and closing components, subsequently operated as an office building. Currently the building includes only one apartment: living room, two bedrooms, kitchen, bathroom, small entrance room, hall, porch.

The thermal characteristics of the envelope are synthesized in the following table.

Modelul este unul de tip recurent-decizional cu paşi alternativi. Se prezintă validarea experimentală a modelului teoretic prin măsurările efectuate în clădirea CE INCERC București, pe suportul unui interval de 57 de zile (06.01-04.03.2009).

În final se prezintă două studii de caz privind aplicarea modelelor de calcul a necesarului și consumului de energie pentru încălzirea spațiilor, pe suportul a două clădiri: o clădire de locuit colectivă (bloc de locuințe), respectiv o clădire cu destinația de birouri, subliniindu-se diferentele dintre valorile PEC determinate pe baza modelelor de calcul validate experimental si cele standardizate, care pun sub semnul intrebarii aplicabilitatea metodelor de calcul standardizate.

2. VALIDAREA EXPERIMENTALĂ A METODELOR DE CALCUL LUNAR AL NECESARULUI DE CĂLDURĂ – CE INCERC București

2.1. Prezentarea CE INCERC București

Clădirea experimentală din incinta INCERC București este o clădire de locuit individuală, parter, cu acoperiș înclinat, fără subsol, proiectată și executată inițial ca o clădire experimentală pentru elemente structurale și de închidere din BCA, care ulterior a funcționat ca o clădire de birouri. În prezent clădirea are un singur apartament cu: o cameră de zi, două dormitoare, o bucătărie, o baie, sas, hol, pridvor.

Caracteristicile termice ale anvelopei sunt sintetizate în tabelul următor:

No.	Building component		S (area) [m²]		R (resistance) [m²K/W]	r ₁ [–]	R'[m²K/W]	
1		North	17,20			0,614		
2	Outside walls	South	20,24	76 60	2 020		1,85	
3		East	16,06	76,60	3,020			
4		West	23,10					
5		North	2,34					
6		South	-	11,40	0,516	1.0	0,516	
7	Outside joinery	East	3,60	11,40	0,516	1,0	0,516	
8		West	5,46					
9	25% sloping roof	Horizontal	66,80		2,978	0,768	2,311	
10	Floor on ground	-	64,80		-	-	-	

The measurement chain includes three data acquisition systems: the first for monitoring the solar space operation and the thermodynamic parameters specific to heated space, the second for monitoring the indoor heating system operational parameters and the third for measuring the relevant climatic parameters. The measurements performed on the INCERC experimental building, except for the elements presented in paper [1], allow the acquisition of the following values:

- A. Monitoring system indoor heating system:
- \ddot{U} $Pe(\tau)$ electric power of the space heating energy source [W];
- $\ddot{\mathbf{U}} E(\tau)$ power consumed in the time lag between two successive readings of the energy source [kWh];
- $\ddot{\mathbf{U}}$ $G_s(\tau)$ heat carrier volume flow-rate at the heating energy source [m³/h];
- $\ddot{\mathbf{u}} \ t_{ac1}(\tau) \text{ indoor air temperature in the living}$ (dining) room [°C];
- $\ddot{\mathbf{u}} t_{ac2}(\tau)$ indoor air temperature in the NW bedroom [°C];
- $\ddot{\mathbf{u}} t_{ac3}(\tau)$ indoor air temperature in the SW bedroom [°C];
- $\ddot{\mathbf{u}} t_{ac4}(\tau)$ indoor air temperature in the kitchen [°C].
- B. Climatic parameters measurement system:
- \ddot{U} $I_G(\tau)$ global solar radiation (total in the horizontal plane) [W/m²];
- $\ddot{\textbf{U}} \ \textit{Id}_{_{\mathcal{O}}}(\tau) \ \text{diffuse solar radiation in the horizontal} \\ \text{plane [W/m^2];}$
- $\ddot{\mathsf{u}} \ t_{\scriptscriptstyle o}(\tau) \text{outdoor air temperature } [^{\circ}\mathsf{C}].$

The temperatures are read every 5 s and are averaged every 5 min., and the heat carrier flow-rate is established as a mean value for 5 min., according to the number of impulses emitted by the flow-meter (11/imp.). The averaged valued are recorded on DataTaker memory cards and then taken over in the memory of a "notebook" portable computer.

Lanțul de măsurare utilizat se compune din trei sisteme de achiziție a datelor: primul pentru monitorizarea funcționării spațiului solar și a parametrilor termodinamici caracteristici spațiului încălzit, cel deal doilea pentru monitorizarea parametrilor funcționali ai instalației de încălzire interioară, iar cel de-al treilea pentru măsurarea parametrilor climatici relevanți. Măsurările efectuate în casa experimentală INCERC, cu excepția celor prezentate în lucrarea [1], permit achiziționarea următoarelor valori:

- A. Sistem de monitorizare instalație de încălzire interioară:
- $\ddot{\mathbf{U}}$ $Pe(\tau)$ puterea electrică la nivelul sursei de energie pentru încălzirea spațiilor [W];
- Ü E (τ) energia electrică consumată pe perioada dintre două citiri succesive la nivelul sursei de energie [kWh];
- $\ddot{\mathbf{U}}$ $G_{S}(\tau)$ debitul volumic de agent termic la nivelul sursei de energie pentru încălzire $[\mathbf{m}^{3}/\mathbf{h}];$
- $\ddot{\mathbf{u}}$ t_{ac1}($\mathbf{\tau}$) temperatura interioară a aerului din camera de zi (sufragerie) [°C];
- $\ddot{\mathbf{u}}$ t_{ac2}(τ) temperatura interioară a aerului din dormitorul NV [°C];
- $\ddot{\mathbf{u}} t_{ac3}(\tau)$ temperatura interioară a aerului din dormitorul SV [°C];
- $\ddot{\mathbf{u}} t_{ac4}(\tau)$ temperatura interioară a aerului din bucătărie [°C].
- B. Sistem de măsurare a parametrilor climatici:
- ü $I_G(\tau)$ radiația solară globală (totală în plan orizontal) [W/m²];
- ü $Id_{O}(\tau)$ radiaţia solară difuză în plan orizontal [W/m²];
- $\ddot{\mathbf{u}} t_{e}(\mathbf{\tau})$ temperatura aerului exterior [°C].

Temperaturile sunt citite la intervale de 5 s și sunt mediate la fiecare 5 min., iar debitul de agent termic se determină ca valoare medie pe durata a 5 min., în funcție de numărul de impulsuri emise de debitmetru (1 l / imp.). Valorile mediate sunt înregistrate pe cartelele de memorie din componența aparatelor de tip DataTaker și apoi preluate în memoria unui calculator portabil tip "notebook".

2.2. Measurement schedule and measured data primary processing

The measurements were performed in the 2008-2009 cold season from September 2008 until the end of March 2009.

The building operates in microclimate thermostated conditions. The heat carrier inlet temperature at the heat source was settled at the value of 45°C and the heat supply is adjusted for each heated room by the thermostatic valves, by reducing the flow-rate of the heat carried flown through the heating units. The mobile components (windows, doors) cannot be opened and the ventilation is provided by the solar space, with a constant air flow-rate $G = 102.9 \,\mathrm{m}^3/\mathrm{h}$, 24 h/day. 153 days formed of sequences of at least 5 consecutive days were selected (the shortest time lag, at the end of September 2008) as a support for the experimental validation of the Energy Performance calculation methods. The continuously measured data (solar radiation temperatures and intensities) was processed as daily averages and averages specific to monthly time lags.

The values recorded every 5 min. were averaged on 1h time lags and therefore processed as daily averages for temperatures, electric power and heat carrier flow-rate and the power consumption was integrated for the period of each day in the considered time lags.

The diagram in Fig. 1 presents the variation of the t_e outdoor temperature daily average values, of the temperature of the fresh air pre-heated in the ventilated solar space greenhouse, t_{mVEMP} as well as of the daily heat consumption in the period September 2008 – March 2009. The sensitive effect of the solar space and the impact on the heat consumption are clearly seen.

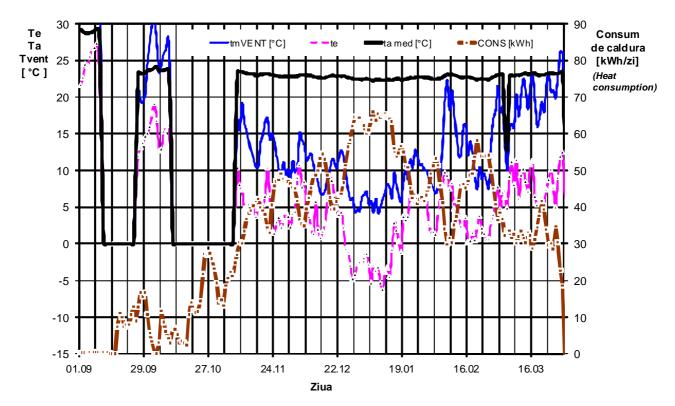
The measured data processing is based on determining the daily and monthly average values (or time lags shorter than a months but longer than 5 consecutive days) of the determining parameters,

namely: t_e , $t_{aer.int.}$, $t_{aer.sera}$, $t_{Perete\ captator}$, heat consumption [kWh/month], greenhouse air flow-rate [m³/h], solar radiation intensity.

The values are presented in Table 1.

2.2. Programul de măsurări și prelucrarea primară a datelor măsurate

Măsurările s-au desfășurat în sezonul rece 2008-2009 începând din luna septembrie 2008 până la finele lunii martie 2009.


Clădirea funcționează în regim de termostatare a microclimatului. Temperatura de tur a agentului termic la nivelul sursei de căldură a fost fixată la valoarea de 45°C, iar reglajul furnizării căldurii se face pentru fiecare încăpere încălzită la nivelul robinetelor cu cap termostatic prin reducerea debitului de agent termic vehiculat prin corpurile de încălzire. Elementele mobile (ferestre, uși) nu se deschid, iar ventilarea se asigură prin intermediul spațiului solar, în regim de debit constant de aer $G = 102.9 \text{ m}^3 / \text{h}$, pe durata de 24 h / zi. Au fost selectate 153 de zile formate din secvente de minim 5 zile consecutive (intervalul cu durata cea mai mică, la finalul lunii septembrie 2008) ca suport pentru validarea experimentală a metodelor de calcul al Performanței Energetice. Datele măsurate continuu (temperaturi și intensități ale radiației solare) au fost prelucrate sub forma mediilor zilnice și mediilor specifice intervalelor lunare.

Valorile înregistrate la intervale de 5 min. au fost mediate pe intervale de 1 h și apoi au fost prelucrate sub forma mediilor zilnice pentru temperaturi, puterea electrică și debitul de agent termic, iar consumul de energie electrică a fost integrat pe perioada fiecărei zile din intervalele considerate.

În graficul din fig. 1 se prezintă variația valorilor medii zilnice ale temperaturii exterioare, t_e , ale temperaturii aerului proaspăt preîncălzit în sera spațiului solar ventilat, t_{mVEMP} precum și ale consumului zilnic de căldură în intervalul septembrie 2008 – martie 2009. Se constată efectul sensibil al spațiului solar și impactul asupra consumului de căldură.

Prelucrarea datelor măsurate se axează pe determinarea valorilor medii zilnice şi lunare (sau intervale sublunare mai lungi de 5 zile consecutive) ale parametrilor determinanți, respectiv: t_e , $t_{aer.int.}$,

 $t_{aer\ sera}$, $t_{Perete\ captator}$, consumul căldură [kWh/lună], debit aer seră [m³/h], intensitatea radiației solare. Valorile de prezintă în tabelul 1.

Fig. 1. Data recorded in the 2008-2009 cold season in the CE INCERC Bucharest experimental building (Date înregistrate în sezonul rece 2008-2009 în clădirea experimentală CE INCERC Bucureşti)

Table 1.

Parameters measured in the experimental building (season 2008-2009)

Parametri măsurati în clădirea experimentală (sezon 2008-2009)

Month / per.	No.days/ month	Q.mas. [kWh/per.]	outdoor temp.	Measured tPEabs.	Measured tVENT	indoor air temp.	IT-horiz [W / m²]	ld-horiz [W / m²]	IT-S [W / m²]
IX	5	72,8	13,7	21,6	21,1	23,4	105,4	67,8	86,4
Χ	9	43,3	16,0	27,9	27,2	23,8	134,8	56,0	136,1
ΧI	23	916,4	5,1	14,3	13,5	23,1	57,3	32,0	82,0
XII	31	1.489,1	3,2	10,2	9,7	22,8	34,6	19,4	55,1
I	31	1.705,1	0,7	8,7	8,1	22,5	44,8	25,3	68,3
П	28	1.283,5	3,8	13,9	13,1	22,7	78,7	45,7	87,8
III	26	843,0	8,4	21,0	20,3	23,2	147,8	73,9	128,9
		TOTAL	Average						
		6353,20	5,6						

2.3. Experimental validation of the monthly calculation methods

The measurements performed in the INCERC experimental building allowed the acquisition of the thermodynamic parameters necessary in verifying the heat consumption calculation method included in the normative regulations concerning the energy expertise and the buildings energy audit. The time

2.3. Validarea experimentală a metodelor de calcul lunar

Măsurările efectuate în clădirea experimentală INCERC au permis achiziționarea parametrilor termodinamici necesari verificării metodei de calcul al consumului de căldură cuprinsă în normativele referitoare la expertiza energetică și auditul energetic al clădirilor. Au fost selectate intervalele indicate

lags indicated in table 1 were selected, corresponding to the months covered by the heating season:

- Indoor air average temperature, t_a , determined as an average rated with the volumes of the temperatures measured in the experimental building rooms, [°C];
 - Outdoor air temperature, t_a [°C];
- Intensity of global (total horizontally) and horizontally diffuse solar radiation intensity and distribution on directions of the total and diffuse values of solar radiation intensity;
- Temperatures specific to the solar space operation:
 - on the inside area of the wall adjoining the solar space;
 - of the pre-heated fresh air flown into the building;
- Thermal flow yielded by the indoor sources (measurement and automatic devices in the experimental building), $\Phi_i = 185 \text{ W}$ (indoor inputs);
- Ventilation flow-rate supplied by ventilators V1 and V2 providing a constant number of air exchanges, $n_a = 0.60 \text{ h}^{-1}$;
- Total heat consumption for heating, *E* [kWh].

Taking into account the fact that during the experiment the indoor thermal conditions are controlled, with thermostated operation of the indoor heating system at a constant value of the indoor temperature, the value of the heat consumption modification coefficient for space heating (specific to the calculation model of NP 048-2000), which takes into consideration the lowering of the indoor temperature at night, C_p , was considered 1.

The synthesis of the thermodynamic parameters processing for determining the number of degreesdays and the heat consumptions calculated according to the NP 048-2006 method is presented in Table 2 and in the diagrams in Fig. 2 and Fig. 3, compared to the measured values of the heat consumption used for heating. We emphasize that the calculation model used by the NP 048-2006 method is updated based on the model of the heat transfer at the building-ground boundary (the case of a building on heat insulated socle) in the processed

în tabelul 1, corespunzătoare lunilor sezonului de încălzire:

- Temperatura medie a aerului interior, t_a , determinată ca medie ponderata cu volumele ale temperaturilor măsurate în încăperile clădirii experimentale, [°C];
 - Temperatura aerului exterior, t_a [°C];
- Intensitatea radiației solare globale (totală în plan orizontal) și difuze în plan orizontal precum și repartizarea pe orientări a valorilor totale și difuze ale intensității radiației solare;
- Temperaturile caracteristice funcționării spatiului solar:
- pe suprafața interioară a peretelui adiacent spațiului solar;
- a aerului proaspăt preîncălzit introdus în clădire;
- Fluxul termic cedat de sursele interioare (aparatura de măsurare și automatizare din clădirea experimentală, $\Phi_i = 185 \text{ W}$ (aporturi interne);
- Debitul de ventilare asigurat de ventilatoarele V1 și V2 care asigură un număr de schimburi de aer constant la valoarea $n_a = 0.60 \text{ h}^{-1}$;
- Consumul total de căldură pentru încălzire, E [kWh].

Ținând seama de faptul că pe durata experimentului regimul termic interior este de tip controlat, cu funcționare termostatată a instalației de încălzire interioară la o valoare constantă a temperaturii interioare, valoarea coeficientului de modificare a consumului de căldură pentru încălzirea spațiilor (propriu modelului de calcul din NP 048-2000), care ia în considerare reducerea temperaturii interioare pe durata nopții, C_R , a fost luat în calcul cu valoarea 1.

Sinteza prelucrării parametrilor termodinamici pentru determinarea numărului de grade-zile și consumurile de căldură calculate conform metodei NP 048-2006 se prezintă în tabelul 2 și în graficele din fig. 2 și fig. 3, comparativ cu valorile măsurate ale consumului de energie pentru încălzire. Se subliniază faptul că modelul de calcul propriu metodei NP 048-2000 este actualizat cu modelul transferului de căldură la frontiera clădire-sol (cazul clădire pe soclu izolat termic) sub forma prelucrată a funcțiilor

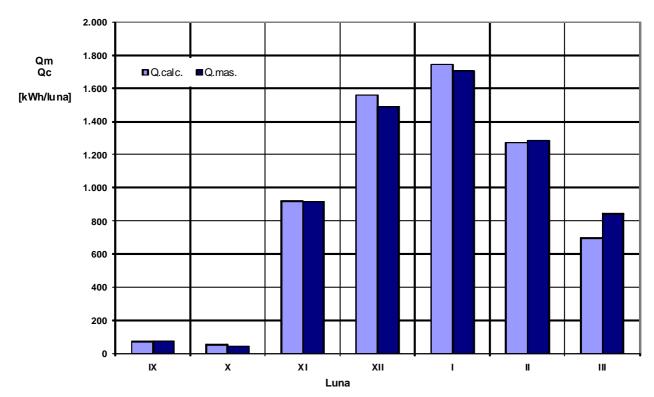


Fig. 2. Measured and calculated values (NP 048-2000) of the CE INCERC Bucharest experimental building heat consumption – 2008-2009 cold season (Valori măsurate şi calculate (NP 048-2000) ale consumului de căldură al clădirii experimentale CE INCERC Bucureşti – sezon rece 2008-2009)

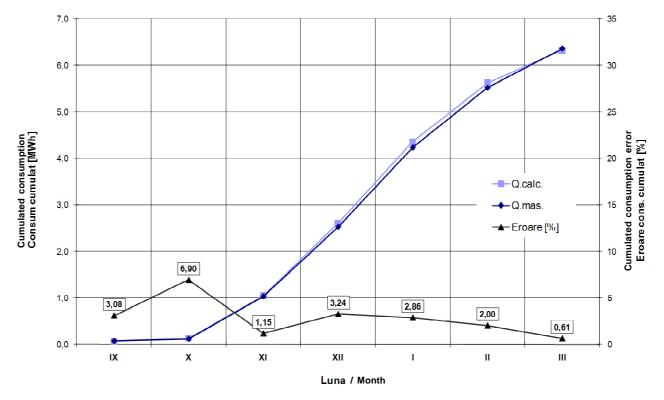


Fig. 3. Cumulated energy consumptions – heating CE INCERC Bucharest – 2008-2009 cold season and comparison between the measured values and the calculated ones (NP 048-2000) (Consumuri energetice cumulate – încălzire CE INCERC Bucureşti – sezon rece 2008-2009 și comparație între valorile măsurate și cele calculate (NP 048-2000))

form of spline functions, both in terms of the heat transfer characteristics and of the outline outdoor temperature - NP 048-2006 model.

This way of processing the data resulted from the mathematical modeling based on the transient heat transfer through the ground, associated to the generation of a transfer environment provided by using the similitude method was implemented in the Rapid Calculation Method [2] following the experimental validation on the support of the CE INCERC Bucharest building within the research project [3]. The use as a theoretical support of the model included in NP 048-2006 method is justified by the phenomenological approach as well as by the adapting to the solar space including in the building structure. The calculation method included in Mc 001 / 2-2006 (which reproduces the method included in the SR EN 13790 standard in the assessment of the heat demand) is not updated as previously mentioned (heat transfer through ground and solar space) and therefore cannot be representative for the validation on the support on the CE INCERC Bucharest building.

The result confirms the accuracy of the NP 048-2000 calculation procedure. The error in the 2008-2009 heating season is 0.61%. Even if the rather high values recorded in October and March seem disturbing, they refer to reduced heat consumption values and actually have no relevance. The cumulated curves of the three consumptions ($Q_{m \bar{a} surar}$, Q_{calcul}) actually overlap in the diagram in Fig. 3.

The results above grant to the NP 048-2006 model the quality of reference calculation model in determining the heat demand of a building, with a monthly pace (in fact for time sequences longer than

spline, atât în ceea ce privește caracteristica de transfer de căldură, cât și temperatura exterioară de contur - model NP 048-2006. Acest mod de prelucrare a datelor rezultate din modelarea matematică bazată pe regimul nestaționar de transfer de căldură prin sol, asociată generării unui mediu de transfer obținut prin aplicarea metodei similitudinii, a fost implementat în Metoda Rapidă de calcul [2] ca urmare a validării experimentale pe suportul clădirii CE INCERC București în cadrul proiectului de cercetare [3]. Utilizarea ca suport teoretic a modelului inclus în metoda NP 048-2006 se justifică atât prin abordarea de tip fenomenologic, cât și prin adaptarea la includerea spațiului solar în structura clădirii. Metoda de calcul inclusă în Mc 001 / 2-2006 (care reproduce în evaluarea necesarului de căldură metoda din standardul SR EN 13790) nu beneficiază de adaptările mentionate (transfer de căldură prin sol și spațiu solar) și, prin urmare, nu poate fi reprezentativă pentru validarea pe suportul clădirii CE INCERC Bucuresti.

Rezultatul atestă corectitudinea procedurii de calcul din NP 048-2000. Eroarea pe sezonul de încălzire 2008-2009 este de 0,61 %. Chiar dacă erorile relativ mari înregistrate în lunile octombrie și martie par deranjante, ele se referă la valori reduse ale consumului de căldură și practic nu au relevanță. Curbele cumulate ale celor trei consumuri ($Q_{măsurat}$ și $Q_{calculNP 048}$) sunt practic suprapuse pe graficul din fig. 3. Rezultatele de mai sus conferă modelului NP 048-2006 calitatea de model de calcul de referință pentru determinarea necesarului de căldură al unei clădiri, cu pas de timp lunar (de fapt pentru secvențe de timp cu durată peste 120 de ore consecutive). Studiile de caz care se prezintă în

Table 2. Values provided by calculation and measurements (CE INCERC)

(Valori rezultate prin calcul şi din măsurări (CE INCERC))

Time lag	Period [days]	t _{iR(C)} [°C]	t _{eR(C)} [°C]	NGz _(C) [°C da <i>y</i> i]	$E_{(C)}[kWh]$	E _(M) [kWh]	Deviation [%]
September	5	21,63	17,28	21,8	70,59	72,83	-3,1%
October	9	22,27	20,52	15,8	53,61	43,34	23,7%
November	23	20,94	9,27	268,4	920,32	916,42	0,4%
December	31	20,47	6,00	448,4	1.558,83	1.489,11	4,7%
January	31	20,07	3,94	499,8	1.744,19	1.705,12	2,3%
February	28	20,43	7,40	364,8	1.273,19	1.283,52	-0,8%
March	26	21,22	13,53	200,1	693,94	842,99	-17,7%

120 consecutive hours). The case studies further presented were approached by using the NP 048-2006 model as a reference model in terms of which the other monthly pace calculation models were analyzed (Mc 001-2006). We mention that the monthly pace calculation instrument, specific to NP 048-2006 also maintains its validity within acceptable limits (errors under 10%) in the case of excessively glazed buildings, but only in certain climatic zones (e.g. Romania's winter zones III and IV). For such buildings, the only proper model is the detailed calculation model with hourly pace, which is the object of this report. An aspect connected to that of experimental validation is the attesting of the softwares used in issuing the Energy Performance Certificate for existing buildings and mainly for the apartments in the existing buildings. The reference software in attesting such softwares is performed by detailed modeling of the thermal processes and further by monthly pace modeling. The two variants validate themselves in the line of the analysis of the results obtained by time integration specific to the detailed method, compared to the results obtained by monthly pace modeling (sequences limited to at least 120 consecutive hours). An error under 3% between the results leads to the adoption of the monthly pace software as a reference software strictly for this type of buildings / parts of buildings. Therefore, in order to determine the seasonal heat demand, the proper calculation method is that specific to the local regulation NP 048-2006 (variant included in the Mc 001-2006 national regulation as an alternative calculation method). The transition to the heat consumption and the determination of PEC implies to consider the thermal system efficiency as well as to adopt certain regulations specific to PEC assessment for whole buildings or parts of them (apartments). The determination of the seasonal heat demand by the hourly pace calculation method is compulsory in the case of modern buildings with high glazing rates (mainly public buildings), as well as for buildings equipped with solar passive heating systems (solar space, Trombe system, INCERC system [4]); meanwhile, in the case of condominiums and other types of buildings with less than 40% glazing rate, the monthly pace calculation method should be used (minimum admitted time lag: 120 consecutive hours).

continuare au fost abordate prin utilizarea modelului NP 048-2006 ca model de referință în raport cu care s-au analizat si celelalte modele de calcul cu pas de timp lunar (Mc 001-2006). Menționăm faptul că instrumentul de calcul cu pas de timp lunar, propriu NP 048-2006, îşi păstrează valabilitatea în limite acceptabile (erori sub 10 %) și în cazul clădirilor excesiv de vitrate, dar în anumite zone climatice (ex. zonele III și IV de iarnă ale României). Pentru astfel de clădiri singurul model adecvat este modelul de calcul detaliat cu pas de timp orar, care face obiectul articolului de față. O problemă conexă problemei validării experimentale o constituie atestarea programelor de calcul utilizate pentru elaborarea Certificatului de Performanță Energetică a clădirilor existente și, în special, a apartamentelor din clădiri existente. Programul de calcul de referință în raport cu care se realizează atestarea programelor de calcul este realizat prin modelare detaliată a proceselor termice și apoi prin modelare cu pas de timp lunar. Cele două variante se autovalidează în sensul analizei rezultatelor obținute prin integrare temporală proprii metodei detaliate în comparație cu rezultatele obținute prin modelare cu pas de timp lunar (secvente limitate inferior la 120 de ore consecutive). O eroare sub 3 % între rezultate conduce la adoptarea programului de calcul cu pas lunar ca program de calcul de referință, strict pentru acest tip de clădiri / părți din clădire. Prin urmare, în scopul determinării necesarului sezonier de căldură, metoda de calcul adecvată este cea proprie reglementării autohtone NP 048-2006 (variantă inclusă în reglementarea naționala Mc 001-2006, ca metodă alternativă de calcul). Trecerea la consumul de căldură și determinarea Performanței Energetice a Clădirii (PEC) implică considerarea randamentelor instalației termice împreună cu adoptarea unor reguli specifice evaluării PEC sau a unor părți din clădire (apartamente). Determinarea necesarului de căldură sezonier prin metoda de calcul cu pas orar se impune în cazul clădirilor moderne caracterizate de raport de vitrare ridicat (în special clădiri publice), precum și al clădirilor dotate cu sisteme pasive de încălzire solară (spațiu solar, sistem Trombe, sistem INCERC [4]), dar în cazul clădirilor de locuit și al celorlalte tipuri de clădiri caracterizate de raportul de vitrare al anvelopei sub 40 % se recomandă utilizarea metodei de calcul cu pas lunar (interval minim admis 120 de ore consecutive).

3. MATHEMATICAL MODEL SPECIFIC TO HOURLY THERMAL BALANCE

3.1. Theoretical substantiation

The hourly thermal balance is useful mainly in the PEC analysis of buildings with lightweight envelopes and / or low thermal capacity of inside building components. A special category is that of buildings with high glazing rates, which usually are public. In this case, in the cold season, the time lags when occupied space are heated and cooled respectively may alternate. The simulation models based on monthly calculation provide results much different from the phenomenological reality, which, even if they may be considered acceptable for buildings energy certification, cannot be used as energy design instruments for new buildings or for the energy-related upgrading of existing ones (the deviation is the more so obvious as the energy potential specific to solar radiation is higher).

We further present a calculation method and analysis including decisional elements associated to an alternate paces approach. The alternation refers to the decision on heating, namely intervention by mechanical ventilation so as to reach an acceptable microclimate in the occupied spaces. The simulation model may be also used in performing systems of efficiently using the thermodynamic potential of various spaces (use of reversible heat pumps in the energy management of spaces differently loaded from the thermal point of view.

The issue is approached in a differential manner, based on the thermal flows balance and on the variation of the inside building components inner energy, unlike the integral energy methods, based on energy balance, which ignore the thermal capacity of the building components. The calculation model adopted is different from the models indicated in the European standards [5], [6] and [7] characterized by a rough approach on the envelope thermal response and by a lack of decisional elements concerning the space ventilation associated to an energy-related approach of solar radiation impact; these elements make them improper for the accurate modeling of the thermal processes in modern buildings spaces or in buildings that are undergoing energyrelated upgradings. The report presents, on the support of case studies subsequent to the

3. MODEL MATEMATIC PROPRIU BILANȚULUI TERMIC ORAR

3.1. Fundamentare teoretică

Bilantul termic orar este util în special în cazul analizei performanței energetice a clădirilor caracterizate de anvelope ușoare sau / și de capacitate termică redusă a elementelor de construcții interioare. O categorie specială o constituie clădirile caracterizate de raport de vitrare ridicat, clădiri care fac parte, în general, din categoria clădirilor publice. În cazul acestui tip de clădiri este posibil ca în sezonul rece să alterneze intervalele de timp în care se procedează la încălzirea, respectiv răcirea spațiilor ocupate. Modelele de simulare bazate pe calculul lunar conduc la rezultate relativ departe de realitatea fenomenologică care, chiar dacă pot fi considerate acceptabile în scopul certificării energetice a clădirilor, nu pot fi utilizate ca instrumente de proiectare energetică a unor clădiri noi sau chiar de modernizare energetică a unora existente (abaterea este cu atât mai evidentă cu cât potențialul energetic propriu radiației solare este mai ridicat).

În cele ce urmează se prezintă o metodă de calcul și analiză care include elemente decizionale asociate cu o abordare de tipul pașilor alternanți. Alternanța se referă la decizia de încălzire, respectiv de intervenție pe calea ventilării mecanice în scopul realizării unui microclimat acceptabil în spațiile ocupate. Modelul de simulare poate fi utilizat și în scopul realizării sistemelor de exploatare a potențialului termodinamic al diferitelor spații – utilizarea pompelor de căldură reversibile în scopul managementului energetic al spațiilor diferit solicitate din punct de vedere termic.

Abordarea problemei este una diferențială, bazată pe bilanțul fluxurilor termice și pe variația energiei interne a elementelor de construcție interioare, spre deosebire de metodele de tip energetic integrale, bazate pe bilanț energetic, care ignoră capacitatea termică a elementelor de construcție. Modelul de calcul adoptat este diferit de modelele indicate în standardele europene [5], [6] și [7] a căror abordare grosiera privind răspunsul termic al anvelopei, precum și lipsa elementelor decizionale cu privire la ventilarea spațiilor asociate unei abordări energetice a impactului radiației solare, le face improprii modelării corecte a proceselor

experimental validation of the detailed calculation model, the errors resulting from the use of the calculation methods specific to the European standards.

Taking into account the necessity of the experimental validation of the proposed model, the relations further presented refer to the main zone of CE INCERC Bucharest, equipped with ventilated solar space, with the known air mass flow-rate, G_s , the known temperature of the air exhausted in the occupied space, t_{as} (τ), and the specific heat flow dissipated through the surface adjoining the occupied space of the solar radiation collecting opaque component, q_{is} (τ) [8].

• The thermal balance equation has the following expression:

termice din spațiul clădirilor moderne sau care se modernizează energetic. Lucrarea prezintă, pe suportul unor studii de caz succesive validării experimentale a modelului de calcul detaliat, erorile asociate utilizării metodelor de calcul proprii standardelor europene.

Dată fiind necesitatea validării experimentale a modelului propus, relațiile prezentate se referă la zona principală a CE INCERC București, dotată cu spațiu solar ventilat, caracterizat de debitul masic de aer cunoscut, G_s , de temperatura cunoscută a aerului refulat în spațiul ocupat, $t_{as}(\tau)$, și de fluxul termic specific disipat prin suprafața adiacentă spațiului ocupat a elementului opac de captare a radiației solare, $q_{is}(\tau)$ [8].

• Ecuația de bilanț termic al aerului are expresia:

$$G_{s}c_{pa}t_{as}(\tau) + a_{cv}S_{LOC} + Q_{cv}(\tau) = \alpha_{cv}S_{E} \cdot [t_{a}(\tau) - \bar{t}_{s}(\tau)] + q_{is}(\tau) \cdot S_{p} + \alpha_{cv}S_{p} \cdot [t_{a}(\tau) - t_{p}(\tau)] + G_{s}c_{pa}t_{a}(\tau)$$
(1)

where Q_{cv} (τ) represents the thermal flow yielded by the heating source (primarily convective – static units).

• The envelope thermal balance, except for the collecting wall, a part of the ventilated solar space is concentrated in the expression of the average temperature, $\bar{t}_s(\tau)$, of the inside surfaces adjoining the occupied space of the transparent/opaque components:

în care $Q_{cv}(\tau)$ reprezintă fluxul termic cedat de sursa de încălzire (de natură prioritar convectivă – corpuri statice).

• Bilanțul termic al anvelopei, cu excepția peretelui captator, parte a spațiului solar ventilat, este concentrat în expresia temperaturii medii, $\bar{t}_s(\tau)$, a suprafețelor interioare adiacente spațiului ocupat ale elementelor opace transparente:

$$\bar{t}_s(\tau) = [1 - (\alpha_i \overline{R})^{-1}] \cdot t_i(\tau) + (\alpha_i \overline{R})^{-1} \cdot \bar{t}_{ev}(\tau)$$
(2)

where:

în care:

$$\alpha_i = \alpha_{cv} + \alpha_r F_R \cdot \frac{S_T}{S_E} \tag{3}$$

$$\bar{t}_{ev}(\tau) = \frac{\sum_{k} \left[\left(\frac{S}{R} \right)_{k} \cdot t_{ev_{K}}(\tau) \right]}{\sum_{k} \left(\frac{S}{R} \right)_{k}}$$
(4)

represent the building average virtual outdoor temperature, including the heat transfer on the building-soil interface. The thermal coupling reprezintă temperatura exterioară virtuală medie a clădirii, inclusiv transferul de căldură la interfața

clădire-sol. Coeficientul de cuplaj termic $\left(\frac{S}{R}\right)_{SOL}$

coefficient $\left(\frac{S}{R}\right)_{SOL}$ and the outline outdoor

temperature t_{ec} (τ) are determined by the relations included in Mc 001/1 – 2006.

The resulting indoor temperature $t_i(\tau)$ may be expressed according to the air temperature, $t_a(\tau)$, the inside building components temperature, $t_p(\tau)$ and the average virtual outdoor temperature, $\bar{t}_{ev}(\tau)$, by relation:

și temperatura exterioară de contur t_{ec} (τ) se determină cu relațiile cuprinse în Mc 001/1 - 2006.

Temperatura interioară rezultantă t_i (τ) se poate exprima în funcție de temperatura aerului, t_a (τ), de temperatura elementelor de construcție interioare, t_p (τ) și de temperatura exterioară virtuală medie $\bar{t}_{ev}(\tau)$, cu relația:

$$t_{i}(\tau) = A_{1}t_{a}(\tau) + A_{2}t_{n}(\tau) + A_{3}\bar{t}_{ev}(\tau)$$
(5)

which provides:

din care rezultă:

$$\bar{t}_s(\tau) = B_1 t_a(\tau) + B_2 t_p(\tau) + B_3 \bar{t}_{ev}(\tau)$$
 (6)

where:

în care:

$$A_{1} = \frac{\frac{\alpha_{cv}}{\alpha_{i}}}{\text{Num}}; \qquad A_{2} = \frac{\frac{\alpha_{r}}{\alpha_{i}} \cdot \left(\frac{S_{T}}{S_{E}} - 1\right)}{\text{Num}}; \qquad A_{3} = \frac{\frac{\alpha_{r}}{\alpha_{i}} \cdot F_{R} \cdot (\alpha_{i} \cdot \overline{R})^{-1}}{\text{Num}};$$

$$Num = 1 - \frac{\alpha_r}{\alpha_i} \cdot F_R \cdot [1 - (\alpha_i \cdot \overline{R})^{-1}]; \qquad B_1 = [1 - (\alpha_i \cdot \overline{R})^{-1}] \cdot A_1; \qquad (7)$$

$$B_2 = [1 - (\alpha_i \cdot \overline{R})^{-1}] \cdot A_2;$$
 $B_3 = [1 - (\alpha_i \cdot \overline{R})^{-1}] \cdot A_3 + (\alpha_i \overline{R})^{-1}$

• Thermal balance equation of the inside building components:

• Ecuația de bilanț termic a elementelor de constructie interioare:

$$a_r \cdot \frac{S_{LOC}}{S_P} + \alpha_{cv} \cdot [t_a(\tau) - t_p(\tau)] - \alpha_r F_R \cdot [t_p(\tau) - \bar{t}_s(\tau)] = \frac{M}{S_p} \cdot c \cdot \frac{\mathrm{d}t_p(\tau)}{\mathrm{d}\tau}$$
(8)

which, taking into account relation (6), becomes:

care, ținând seama de relația (6), devine:

$$\frac{\mathrm{d}t_{p}(\tau)}{\mathrm{d}\tau} + \frac{S_{p}}{Mc} \cdot [\alpha_{cv} + \alpha_{r}F_{R} \cdot (1 - B_{2})] \cdot t_{p}(\tau) = \frac{S_{p}}{Mc} \cdot (\alpha_{cv} + \alpha_{r}F_{r}B_{1}) \cdot t_{a}(\tau) + \frac{S_{p}}{Mc} \cdot \alpha_{r}F_{R}B_{3}\bar{t}_{ev}(\tau) + a_{r} \cdot \frac{S_{LOC}}{S_{p}} \cdot \frac{S_{p}}{Mc}$$
(9)

The energy management strategy for the occupied space covers two situations, namely:

a. reaching the settled temperature of the occupied space air, t_{a0} , associated to the heating system operation, namely $Q_{cv}(\tau) > 0$;

b. exceeding the settled air temperature, $t_{a}(\tau) > t_{a0}$, associated to $Q_{cv}(\tau) = 0$.

In the case of CE INCERC Bucharest, situation **b.** can frequently occur following the operation of the ventilated solar space.

Strategia de management energetic al spațiului ocupat cuprinde două situații, respectiv:

a. realizarea temperaturii fixate a aerului din spațiul ocupat, t_{a0} , asociată cu funcționarea instalației de încălzire, respectiv $Q_{av}(\tau) > 0$;

b. depășirea temperaturii fixate a aerului, $t_a(\tau) > t_{a0}$, asociată cu $Q_{cv}(\tau) = 0$.

În cazul CE INCERC București situația **b.** se poate manifesta frecvent, consecință a funcționării spațiului solar ventilat.

As the analysis is specific to the cold season, the initializing of the analysis procedure involves the option $t_a(\tau) = t_{a0}$, the known settled value.

The thermal balance equation (9) where $t_a(\tau) = t_{a0}$, becomes:

Dat fiind faptul că analiza este proprie sezonului rece, inițializarea procedurii de analiză implică opțiunea $t_a(\tau) = t_{a0}$, valoare fixată cunoscută.

Ecuația de bilanț termic (9), în care $t_a(\tau) = t_{a0}$, devine:

$$\frac{\mathrm{d}t_p(\tau)}{\mathrm{d}\tau} + D_1 \cdot t_p(\tau) = F_2(\tau) \tag{10}$$

where:

în care:

$$\begin{cases} D_{1} = \frac{S_{p}}{Mc} \cdot [\alpha_{cv} + \alpha_{r}F_{R} \cdot (1 - B_{2})] \\ F_{2}(\tau) = \frac{S_{p}}{Nc} \cdot (\alpha_{cv} + \alpha_{r}F_{R}B_{1}) \cdot t_{a0} + \frac{S_{p}}{Mc} \cdot \alpha_{r}F_{R}B_{3}\bar{t}_{ev}(\tau) + a_{r} \cdot \frac{S_{LOC}}{S_{p}} \cdot \frac{S_{p}}{MC} \end{cases}$$

$$(11)$$

with the solution:

cu soluția:

$$t_p(\tau) = t_{p_0} \cdot \exp(-D_1 \tau) + \frac{m_2}{D_1} \cdot \tau + \left(\frac{n_2}{D_1} - \frac{m_2}{D_1^2}\right) \cdot [1 - \exp(-D_1 \tau)]$$
 (12)

where: t_{p_0} – value $t_p (\tau - \Delta \tau)$

în care: t_{p_0} – valoarea t_p ($\tau - \Delta \tau$)

$$m_2 = \frac{F_2(\tau) - F_2(\tau - \Delta \tau)}{\Delta \tau}; \qquad n_2 = F_2(\tau - \Delta \tau)$$

Based on value $t_{p}(\tau)$, $t_{i}(\tau)$ and then $Q_{cv}(\tau)$ are determined.

If $Q_{cv}(\tau) > 0$, this value is recorded and it is proceeded to the next step, in the same calculation line. If $Q_{cv}(\tau) < 0$, it results that space cooling is required and, therefore, $Q_{cv}(\tau) = 0$ is adopted (equivalent to the lack of heat supply in the occupied space)

The air thermal balance equation becomes:

Pe baza valorii $t_p(\tau)$ se determină $t_i(\tau)$ și apoi $Q_{cv}(\tau)$.

Dacă $Q_{cv}(\tau) > 0$, se înregistrează valoarea și se trece la pasul următor, pe același traseu de calcul.

Dacă $Q_{cv}(\tau) < 0$, rezultă că se impune răcirea spațiului și, în consecință, se adoptă $Q_{cv}(\tau) = 0$ (echivalent cu lipsa furnizării căldurii în spațiul ocupat).

Ecuatia de bilant termic al aerului devine:

$$\alpha_{cv} S_E \cdot [t_i(\tau) - \bar{t}_s(\tau)] + \alpha_{cv} S_p \cdot [t_a(\tau) - t_p(\tau)] + G_s c_{pa} \cdot [t_a(\tau) - t_{as}(\tau)] + q_{ss}(\tau) \cdot S_p = a_{cv} S_{LOC}$$
(14)

which becomes a linking equation between functions $t_a(\tau)$ and $t_p(\tau)$ as a consequence of the dependence provided by (6). The expression $t_a(\tau) = f[t_p(\tau)]$ leads to:

care devine ecuație de legătură între funcțiile $t_a(\tau)$ și $t_p(\tau)$ ca urmare a dependenței furnizată de relația (6). Prin exprimarea $t_a(\tau) = f[t_p(\tau)]$ se obține:

 $t_a(\tau) = C_1 \cdot t_p(\tau) + F_1(\tau) \tag{15}$

where:

în care:

$$\begin{cases}
C_{1} = \frac{\alpha_{cv} \cdot [S_{E} \cdot (B_{2} - 1) + S_{T}]}{\text{Num1}}; \quad \text{Num1} = \alpha_{cv} \cdot (S_{T} - S_{E}B_{1}) + G_{s}c_{pa} \\
F_{1}(\tau) = \frac{\alpha_{cv}S_{e}B_{3} \cdot \bar{t}_{ev}(\tau) + G_{s}c_{pa} \cdot t_{as}(\tau) + a_{cv}S_{LOC}}{\text{Num1}}
\end{cases}$$
(16)

(13)

• The thermal balance equation of the inside building components becomes:

• Ecuația de bilanț termic al elementelor interioare de construcție devine:

$$\frac{\mathrm{d}t_p(\tau)}{\mathrm{d}\tau} + D_2 t_p(\tau) = F_3(\tau) \tag{17}$$

where:

în care:

$$\begin{cases}
D_{2} = \frac{S_{p}}{Mc} \cdot \{\alpha_{r} \cdot [1 - (B_{1} + B_{2})] + \alpha_{cv} \cdot (1 - C_{1})\} \\
F_{3}(\tau) = \frac{S_{p}}{Mc} \cdot \left[(\alpha_{cv} + \alpha_{r}B_{1}) \cdot F_{1}(\tau) + \alpha_{r}B_{3}\bar{t}_{ev}(\tau) + a_{r} \cdot \frac{S_{LOC}}{S_{p}} \right]
\end{cases}$$
(18)

and the solution is:

cu solutia:

$$t_p(\tau) = t_{p_0} \cdot \exp(-D_2 \tau) + \frac{m_3}{D_2} \cdot \tau + \left(\frac{n_3}{D_2} - \frac{m_3}{D_2^2}\right) \cdot [1 - \exp(-D_2 \tau)]$$
 (19)

with:

$$m_3 = \frac{F_3(\tau) - F_3(\tau - \Delta \tau)}{\Delta \tau}; \qquad n_3 = F_3(\tau - \Delta \tau)$$

 $t_a(\tau)$ (15) and $t_i(\tau)$ (5) are further determined. The importance of the approach involving the simulation model and the alternating steps lies in the fact that the transitory time lags are characterized by the considerable reduction of the heat demand following the heat accumulation in the hours when $t_a(\tau) > t_{a0}$. The next step observes the same algorithm. If $t_a(\tau) \ge t_{a0}$, the algorithm already presented continues. If $t_a(\tau) < t_{a0}$, we go back to the initial moment and the algorithm of **a.** type will be used, which provides $Q_{cv}(\tau)$.

The virtual outdoor temperatures are determined for each closing opaque/transparent overground component, according to the envelope component structure and to the climatic parameters hourly values. In the case of over-ground opaque building components, the heat flow density is determined by relations (8) and (10). In the case of heat transfer between building and soil, the virtual outdoor temperature is the outline outdoor temperature, t_{ec} (τ).

The heat demand for a time lag T > 1 h is determined as a sum of the $Q_{cv}(\tau)$ hourly values, namely:

În continuare se determină $t_a(\tau)$ (15) și $t_i(\tau)$ (5). Importanța abordării modelului de simulare și pașii alternanți constă în faptul că intervalele tranzitorii se remarcă prin reducerea considerabilă a necesarului de căldură ca urmare a acumulării de căldură în orele în care $t_a(\tau) > t_{a0}$. Pasul următor se supune aceluiași algoritm. Dacă $t_a(\tau) \ge t_{a0}$, continuă algoritmul deja prezentat. Dacă $t_a(\tau) < t_{a0}$, se revine la momentul inițial și se utilizează algoritmul de tip \mathbf{a} , din care rezultă $Q_{cv}(\tau)$.

Temperaturile exterioare virtuale se determină pentru fiecare element de închidere suprateran opac/transparent, în funcție de structura elementului de anvelopă și de valorile orare ale parametrilor climatici. În cazul elementelor de construcție opace supraterane, densitatea de flux termic se determină cu relațiile (8) și (10). În cazul transferului de căldură între clădire și sol temperatura exterioară virtuală este temperatura exterioară de contur t_{ec} (τ).

Necesarul de căldură pe un interval T > 1 h se determină ca sumă a valorilor orare $Q_{cv}(\tau)$, respectiv:

$$Q_{cv}(T) = \sum_{\tau=0}^{T} Q_{cv}(\tau)$$
 (20)

and takes into account only the values $Q_{cv}(\tau) > 0$. At the same time the state parameters of the indoor microclimate are determined: $t_a(\tau)$ and $t_i(\tau)$ respectively.

If the air temperature comfort value is t_{a0} and the hourly values average $\tau \in [0, T]$ is noticed to exceed the settled value, namely:

 $\bar{t}_a(T) = \frac{1}{T} \cdot \sum_{\tau} t_a(\tau) > t_{a0} \tag{21}$

and this value is associated to a high $Q_{cv}(T)$ value, it results that the energy configuration solution of the building is not recommendable, mainly because of the excessive influence of the solar radiation on one hand and of the reduced thermal capacity associated to a reduced area of heat transfer between the indoor air and the outline inside components, on the other hand. Theoretically, a value $\bar{t}_a(T) > t_{a0}$ would entail $Q_{cv}(T) = 0$, which in the case of excessively glazed buildings is never reached.

3.2. Experimental validation

The measurements performed in the period 6.01.2009-4.03.2009 on the INCERC Bucharest experimental building form the experimental support of the validation of the mathematical model presented in section 3.1.

• The measured heat demand was determined based on the heat flows released by the heating units, as the heat carrier flow-rates $G_s(\tau)$ and the heat carrier temperatures $t_T(\tau)$ and $t_R(\tau)$ were known in the form of hourly averages. The resulting values were determined by relation:

și ține seama exclusiv de valorile $Q_{cv}(\tau) > 0$. În paralel se determină și parametrii de stare ai microclimatului interior: $t_a(\tau)$, respectiv $t_i(\tau)$.

Dacă valoarea de confort a temperaturii aerului este t_{a0} și se constată că media valorilor orare pe intervalul $\tau \in [0, T]$ depășește valoarea fixată, respectiv:

și această valoare este asociată unei valori $Q_{cv}(T)$ ridicate, rezultă că soluția de configurare energetică a clădirii este una nerecomandabilă, în special din cauza influenței excesive a radiației solare, pe de o parte, dar și din cauza capacității termice reduse asociată cu o suprafață de transfer de căldură redusă între aerul interior și elementele interioare de contur, pe de altă parte. Teoretic o valoare $\bar{t}_a(T) > t_{a0}$ ar atrage după sine $Q_{cv}(T) = 0$, ceea ce în cazul clădirilor excesiv vitrate nu se asigură.

3.2. Validare experimentală

Măsurările efectuate în intervalul 6.01.2009-4.03.2009 în clădirea experimentală INCERC București constituie suportul experimental al validării modelului matematic prezentat în partea 3.1.

• Necesarul de căldură măsurat s-a determinat pe baza fluxurilor termice degajate de corpurile de încălzire, prin cunoașterea debitelor de agent termic $G_s(\tau)$ și a temperaturilor agentului termic $t_T(\tau)$ și $t_R(\tau)$, sub forma mediilor orare. Valorile rezultate s-au determinat cu relația:

$$V_s(\tau) \cdot \rho(\bar{t}) \cdot c_a \cdot [t_T(\tau) - t_R(\tau)] = Q_m(\tau)$$

$$\hat{n} \text{ care:}$$
(22)

where:

$$\bar{t}(\tau) = 0.50 \cdot [t_T(\tau) + t_R(\tau)]$$

• The convective heat flow corresponding to the ventilated solar space was determined by relation: • Fluxul termic convectiv aferent spațiului solar ventilat s-a determinat cu relatia:

$$V_{ss} \cdot \rho(t_{as}(\tau)) \cdot c_{pa} \cdot [t_a(\tau) - t_{as}(\tau)] = Q_{ss}(\tau)$$

$$\tag{23}$$

• The heat emissions corresponding to the measurement devices in the occupied space were estimated at the value $a \approx 3 \text{ W} / \text{m}^2$ and the hourly average value of the heat flow corresponding to these inside heat sources was determined:

• Degajările de căldură aferente aparaturii de măsură din spațiul ocupat au fost estimate la valoarea $a \approx 3 \text{ W} / \text{m}^2$ și s-a determinat valoarea medie orară a fluxului termic aferent acestor surse de căldură interne:

$$Q_{L}(\tau) = a \cdot S_{LOC} \tag{24}$$

• Based on the above mentioned values, the heat flow hourly variation was determined, a consequence to the heat transfer through the envelope opaque and transparent components, using relation:

• Pe baza valorilor susmenționate s-a determinat variația orară a fluxului termic, consecință a transferului de căldură prin elementele opace și transparente de anvelopă, cu relația:

$$\frac{S_E}{\overline{R}} \cdot [t_{i_0} - t_{ev}(\tau)] = Q_m(\tau) - Q_{ss}(\tau) + Q_L(\tau)$$
(25)

and then the temperature difference hourly variation $t_{i_0} - t_{ev}(\tau)$:

și apoi variația orară a diferenței de temperaturi $t_{i_0} - t_{ev}(\tau)$:

$$t_{i_0} - t_{ev}(\tau) = [Q_m(\tau) - Q_{ss}(\tau) + Q_L(\tau)] \cdot \left(\frac{S_E}{\overline{R}}\right)^{-1}$$
 (26)

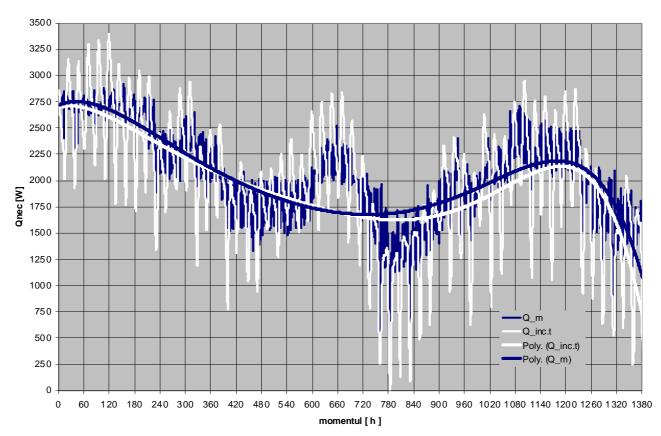
which will be compared to the similar difference theoretically determined.

 The theoretical heat demand of CE INCERC Bucharest with reference to the hourly values, $Q_{cv}(\tau)$, was determined, for the previously mentioned time lag, in terms of the transfer function of the opaque and transparent building components and of the climatic parameters, using the calculation relations presented in section 3.1, mainly relation (1). It is mentioned that the selected analysis period, 06.01-04.03.2009 is characterized by $Q_{cv}(\tau) > 0$ hourly values, which allows the use of the calculation algorithm - variant a., without resorting to the alternating paces procedure.

The diagram in Fig. 4 presents functions $Q_{cv}(\tau)$ and $Q_{nec}(\tau)$. The actually identical general aspect of the two functions is noticed, attested by the average functions as well as by the upper oscillation amplitude of the theoretical values compared to the values resulted from the measured data processing.

In order to analyze this difference in the thermal response, function $t_{i_0} - t_{ev}(\tau)$ was used – specific to the heat transfer through the opaque and transparent envelope components. Three similar functions were determined, namely:

- $-t_{i_0}-t_{ev}(\tau)$ according to the data measured and determined using the relation;
- $-t_{i_0}-t_{ev}(\tau)$ where $t_{ev}(\tau)$ was determined based on the heat integral equation [9];
- $-t_{i_0}-t_{ev}(\tau)$ where $t_{ev}(\tau)$ was determined by the RTU method (Unitary Thermal Response) [9].


care se va compara cu diferența similară determinată teoretic.

• Necesarul teoretic de căldură al CE INCERC București cu referire la valorile orare, $Q_{\alpha \alpha}(\tau)$, s-a determinat, pentru intervalul de timp menționat, în raport cu funcția de transfer a elementelor de construcție opace și transparente și de parametrii climatici, utilizându-se relațiile de calcul prezentate în partea 3.1, în principal relația (1). Se menționează că intervalul de analiză ales, 06.01-04.03.2009, este caracterizat de valori orare $Q_{cv}(\tau) > 0$, ceea ce permite exploatarea algoritmului de calcul - varianta a., fără a se apela la procedura paşilor alternanți.

În graficul din fig. 4 se prezintă funcțiile $Q_{cv}(\tau)$ și Q_{nec} (τ). Se constată alura medie practic identică a celor două funcții, atestată de funcțiile medii, dar și amplitudinea de oscilație superioară a valorilor teoretice în raport cu valorile rezultate din prelucrarea datelor măsurate.

În scopul analizei acestei diferențe de răspuns termic s-a utilizat funcția $t_{i_0} - t_{ev}(\tau)$ – caracteristică a transferului de căldură prin elementele de anvelopă opace și transparente. S-au determinat trei funcții similare, respectiv:

- $-t_{i_0}-t_{ev}(au)$ în funcție de datele măsurate și determinate cu ajutorul relației;
- $= t_{i_0} t_{ev}(\tau)$ în care $t_{ev}(\tau)$ s-a determinat pe baza ecuației integrale a căldurii [9];
- $-t_{i_0}-t_{ev}(\tau)$ în care $t_{ev}(\tau)$ s-a determinat prin metoda RTU [9].

Fig. 4. Heat demand variation of CE INCERC Bucharest in the period 06.01-04.03.2009 (Variația necesarului de căldură al CE INCERC București în intervalul 06.01-04.03.2009)

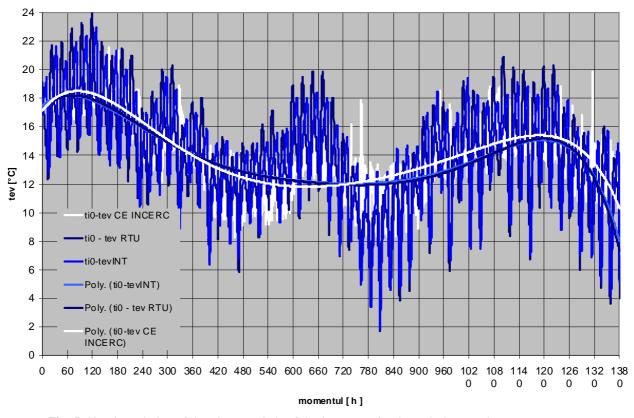


Fig. 5. Hourly variation of the characteristic of the heat transfer through the envelope components – according to the experiment, according to the integral equation and to the RTU method (Variația orară a caracteristicii de transfer de căldură prin elementele de anvelopă – conform experiment, conform ecuației integrale și conform metodei RTU)

The diagram in Fig. 5 presents the hourly variation of the three functions previously mentioned, which proves a behaviour similar to that of the heat demand functions. Value t_{i_0} for which the analysis was performed was determined based on the t_i (τ) hourly values, associated to the heating system operation, namely the t_a (τ) measured hourly values. The average value $\bar{t}_a = 23,4$ °C resulted, to which value $\bar{t}_{i_0} = 22,6$ °C corresponds, used in this analysis. The diagram in Fig. 5 confirms the objective nature of temperature t_{ev} (τ), both by the identity of t_{ev} (τ) [RTU] to t_{ev} (τ) [INT] and by the extremely small difference compared to values t_{ev} (τ) [CE INCERC Bucharest].

We emphasize that these findings are consistent in terms of the (average) tendency curves of the three functions.

It is noticed that the theoretical response of the envelope is strongly deterministic for t_{ev} (τ) [RTU], [INT], the correlation coefficients values ranging between $0.94 \div 0.98$ for t_{ev} (τ) [RTU] and between $0.93 \div 0.96$ for t_{ev} (τ) [INT].

The cumulated values of the heat demand in the period under analysis also support the elements described above. Value 2,767.4 kWh results based on the monthly pace method (NP 048-2000). The totalizing of the hourly values calculated based on t_{ev} (RTU) – the hourly pace method provides the value of 2,727.1 kWh. The difference between the two values, 1.45 % has no significance and validates the NP 048-2006 model compared to the hourly pace detailed calculation method. Moreover, the difference of 2.2 % between the calculated hourly cumulated value, 2727.1 kWh (detailed method) and the cumulated value provided by measurements, 2788 kWh is totally insignificant, so that the experiment validates both calculation methods presented, directly as well as indirectly (monthly pace method by means of the detailed method).

The main conclusions drawn from this phase of the experimental validation are the following:

- the hourly calculation mathematical model for the heat demand accurately meets the cumulated values criterion for long periods of time and is a substantial support of the monthly calculation model; În graficul din fig. 5 se prezintă variația orară a celor trei funcții menționate, care relevă un comportament similar funcțiilor de necesar de căldură. Valoarea t_{i_0} pentru care s-a efectuat analiza s-a determinat pe baza valorilor orare t_i (τ), asociate funcționării instalației de încălzire, respectiv valorilor orare măsurate, t_a (τ). A rezultat valoarea medie $\bar{t}_a = 23,4^{\circ}\text{C}$, căreia îi corespunde valoarea $\bar{t}_{i_0} = 22,6^{\circ}\text{C}$, utilizată în analiza de față. Graficul din fig. 5 atestă caracterul obiectiv al temperaturii t_{ev} (τ), atât prin identitatea t_{ev} (τ) [RTU] cu t_{ev} (τ) [INT], cât și prin diferența infimă în raport cu valorile t_{ev} (τ) [CE INCERC București].

Subliniem faptul că aceste constatări sunt consistente la nivelul curbelor de tendință (medii) ale celor trei functii.

Se constată că răspunsul termic al anvelopei are caracter puternic determinist pentru $t_{ev}(\tau)$ [RTU], [INT], coeficienții de corelare având valorile cuprinse între $0.94 \div 0.98$ pentru $t_{ev}(\tau)$ [RTU] și între $0.93 \div 0.96$ pentru $t_{ev}(\tau)$ [INT].

În susținerea celor de mai sus vin și valorile cumulate ale necesarului de căldură pe durata intervalului analizat. Pe baza metodei cu pas lunar (NP 048-2000) rezultă pentru cele 57 de zile valoarea de 2.767,4 kWh. Însumarea valorilor orare calculate pe baza t_{ev} (RTU) – modelul cu pas orar, conduce la valoarea 2.727,1 kWh. Abaterea dintre cele două valori de 1,45 % este lipsită de semnificație si constituie validare a modelului NP 048-2006 în raport cu metoda de calcul detaliat cu pas orar. Pe de altă parte, între valoarea cumulată orară calculată de 2.727,1 kWh (metoda detaliată) și valoarea cumulată rezultată din măsurări de 2.788 kWh diferenta de 2,2 % este absolut neglijabilă, astfel încât experimentul validează ambele metode decalcul prezentate, atât direct, cât și indirect (metoda cu pas lunar prin intermediul metodei detaliate).

Principalele concluzii care se desprind din această etapă a validării experimentale sunt următoarele:

 modelul matematic de calcul orar al necesarului de căldură răspunde cu fidelitate criteriului de valori cumulate pe durate lungi de timp şi constituie un suport consistent al modelului de calcul lunar; – the hourly calculation mathematical model can be used in the buildings energy configuration analysis, in which case the use of t_{ev} (τ) [RTU, INT] [8] is recommended – especially in the case of generously glazed structures exposed to the greenhouse effect;

- the average tendencies during significant periods of time between the measured values and the data resulted from the mathematical model processing are in fact identical.

Taking into account the elements described above, we consider that the experimental validation phase attests the accuracy of the theoretical model presented in section 3.1 of this paper.

4. CASE STUDY – EMPHASIZING THE IMPACT OF THE GLAZING RATE ON THE BUILDINGS ENERGY PERFORMANCE

4.1. Calculation assumptions

The building under analysis is an office building with complete glazing of the N and S directed facades. The E and W facades are opaque. From the architectural and dimensional points of view, the office building observes the conventional block solution. The technical basement is equipped with thermal systems rather poorly insulated.

The ventilation rate of $\overline{n}_{a_{\min admis}} = 1,5$ sch/h in the occupied hours up to the value of $n_{a_{\max}} = 3$ exch/h useful for the night ventilation and for the periods of overheating in the cold season and in the transition, season are used. In the unequipped time of the building, $n_{a.\min} = 0,2$ sch/h. The building occu-pation leads to the variation of the specific inputs coefficient, a (τ), according to Mc 001/2-2006.

The climatic parameters are specific to the representative year for Bucharest and are used as hourly average values.

The analysis of the Building Thermal Response was based on the INT (Heat Conduction Integral equation method) and the integration time pace is the hourly pace. Values $n_a(\tau)$ may be modified

– modelul matematic de calcul orar poate fi utilizat în analiza de configurare energetică a clădirilor, caz în care se recomandă utilizarea $t_{ev}(\tau)$ [RTU, INT] [8] – în special în cazul structurilor cu vitraj generos expuse efectului de seră;

- tendințele de medie pe durate semnificative de timp între valorile măsurate și datele rezultate din prelucrarea modelului matematic sunt practic identice.

Față de cele de mai sus considerăm etapa de validare experimentală atestă corectitudinea modelului teoretic prezentat în partea 3.1 al lucrării de față.

4. STUDIU DE CAZ-EVIDENȚIEREA IMPACTULUI RAPORTULUI DE VITRARE ASUPRA PERFORMANȚEI ENERGETICE A CLĂDIRILOR

4.1. Premize de calcul

Clădirea analizată este clădire de birouri caracterizată de vitrare completă a fațadelor orientate N și S. Fațadele E și V sunt opace. Din punct de vedere arhitectural și dimensional clădirea de birouri respectă soluția de bloc convențional. Subsolul tehnic este dotat cu instalații termice cu grad mediocru de izolare.

Rata de ventilare $\overline{n}_{a_{\min} \ admis} = 1,5 \text{ sch/h}$ în orele de ocupare a clădirii până la valoarea $n_{a_{\max}} = 3 \text{ sch/h}$ utilă pentru ventilarea nocturnă și pentru intervalele de supraîncălzire în sezonul rece și în sezonul de tranziție. În orele de neocupare a clădirii, $n_{a.\min} = 0,2 \text{ sch/h}$. Ocuparea clădirii conduce la variația coeficientului de aporturi specifice a (τ), în conformitate cu Mc 001/2-2006.

Parametrii climatici sunt proprii anului reprezentativ al Municipiului București și se utilizează sub forma valorilor medii orare.

Analiza Răspunsului Termic al Clădirii s-a efectuat pe baza metodei ecuației Integrale a Conducției Căldurii (INT), iar pasul de timp de integrare este pasul orar. Valorile n_a (τ) se pot

according to the thermal pressure difference between the outside and the inside.

The space heating heat demand was determined based on an original algorithm and the value specific to each hour is based on the verification of the simultaneous conditions:

modifica în funcție de diferența de presiune termică între interior și exterior.

Necesarul de căldură pentru încălzirea spațiilor s-a determinat pe baza unul algoritm original, iar valoarea proprie fiecărei ore se obține pe baza verificării condițiilor simultane:

$$\begin{cases} t_i(\tau) = t_{i_{0(i)}} \\ \min\{t_a(\tau)\} = t_{i_{0(i)}} \end{cases}$$
 (27)

The air conditioning process modeling was performed during the whole year (8,760 h) in the following calculation hypotheses:

A. The main zone heating process observes the double condition (27). In the transition and hot seasons the indoor temperatures $t_a(\tau)$, $t_i(\tau)$ vary freely by values lower or equal to $t_{i_{0(i)}}$. The "night ventilation" is used in the hot season and in the hours of the cold season when the highest admissible value $t_{i_{0(i)}}$ is exceeded.

The heating system intermittently controlled operation is not used. Function $Q(\tau) = 0$, if its design value $Q(\tau) \le 0$, in which case $t_i(\tau)$ and $t_a(\tau)$ are determined. The intermittent operation of the heating system involves the use of a energy economy programme based on maintaining a t_G value of the guard temperature and on the space re-heating in a rather short time. The analyses performed on typical winter days (average day of each winter month) emphasized the low efficiency of the intermittent heating procedure (reduction of the seasonal heat demand by only 3.67%), which urges us to ignore this energy management method.

B. Main zones heating in the cold season, free variation of the $t_i(\tau)$ and $t_a(\tau)$ indoor temperatures and working space cooling in the hot season so that $t_a(\tau) \in [26^{\circ}\text{C}, 27^{\circ}\text{C}]$, a range considered acceptable in terms of comfort.

In both cases, the hourly values $Q(\tau)(Q(\tau)) > 0$ were determined in the cold season and $Q(\tau) < 0$ and based on them the heat/cold demand monthly values expressed in [kWh/m² month] were determined in terms of the S_{LOC} useful area.

Modelarea procesului de climatizare s-a realizat pe durata întregului an (8.760 h) în următoarele ipoteze de calcul:

A. Încălzirea zonei principale se realizează cu respectarea dublei condiții (27). În orele sezonului de tranziție și în sezonul cald temperaturile interioare $t_a(\tau)$, $t_i(\tau)$ variază liber cu valori mai mici sau egale cu $t_{i_{0(i)}}$. Se utilizează "ventilarea nocturnă" în sezonul cald și în orele din sezonul rece în care se depășește valoarea maxim admisă, $t_{i_{0(v)}}$. Nu se practică functionarea cu intermitentă controlată a sistemului de încălzire. Funcția $Q(\tau) = 0$, dacă valoarea sa de calcul $Q(\tau) \le 0$, caz în care se determină $t_i(\tau)$ și $t_a(\tau)$. Funcționarea cu intermitență a instalației de încălzire implică aplicarea unui program de economie energetica care se bazează pe menținerea unei valori t_G a temperaturii de gardă și pe reîncălzirea spațiului într-un timp relativ scurt. Analizele efectuate pe zile tipice de iarnă (ziua medie a fiecărei luni de iarnă) a relevat eficiența redusă a procedurii de încălzire intermitentă (reducere a necesarului sezonier de căldură cu numai 3,67 %), fapt care ne determină să ignorăm aceasta metoda de gestiune energetică.

B. Încălzirea zonei principale în sezonul rece, variația liberă a temperaturilor interioare $t_i(\tau)$ și răcirea spațiului de lucru în sezonul cald astfel încât $t_a(\tau) \in [26^{\circ}\text{C}, 27^{\circ}\text{C}]$, interval considerat acceptabil din punct de vedere al confortului.

În ambele cazuri s-au determinat valorile orare $Q(\tau)(Q(\tau)>0$ în sezonul rece și $Q(\tau)<0$ în sezonul cald) și pe baza acestora s-au determinat valorile lunare ale necesarului de căldură / frig exprimate în [kWh/m² lună] prin raportare la suprafața utilă S_{LOC} .

The values resulted were compared to those specific to the conventional block (condominium) which has an identical configuration with that of the office building. The building considered as a Conventional Block Performance Buildings was analyzed by using two methods of determining the Thermal Response, namely the Unitary Thermal Response Method (RTU) and the Method of the Heat Conduction Integral Equation (INT). The RTU method was used for the multi-layer structure corrected with the thermal bridges influence and the INT method for the equivalent homogeneous structure. The performances of the Conventional Block, determined in both variants, were compared, and based on the closeness of PEC (RTU) and PEC (INT) for the office building dynamic simulation, the INT method was adopted, as it is more rapid and flexible. The RTU method is considered the accurate calculation method, which was proved by its experimental validation [9].

4.2. Mathematical model

The fundamental thermal balance equation for conditioned occupied spaces is:

$$Q(\tau) = S_E \cdot \alpha_{cv} \cdot [t_a(\tau) - \bar{t}_s(\tau)] + S_P \cdot \alpha_{cv} \cdot [t_a(\tau) - t_P(\tau)] + n_a(\tau) \cdot V \cdot \rho \cdot c_{pa} \cdot [t_a(\tau) - t_e(\tau)] - a(\tau) \cdot S_{LOC}$$

$$(28)$$

The average temperature of the inside surfaces of the building components adjoining the outside environment (natural and built) is determined from the thermal balance specific to each type of envelope component, according to the resulting indoor temperature, $t_i(\tau)$ and to the virtual outdoor temperature, $t_{evi}(\tau)$ of each opaque / transparent closing component. The space average value $\bar{t}_{ev}(\tau)$ is determined based on the rated averaged with the thermal coupling factors specific to each building component. The resulting indoor temperature is also determined by a rated average, according to the intensity of the convective and radiative heat transfer processes, of the air volume average temperature $t_a(\tau)$ and the average temperature of the building envelope which includes both inside building components and outside building components. An explanatory approach provides the following:

Valorile rezultate s-au comparat cu cele specifice ale blocului conventional care are o configurație identică cu cea a clădirii de birouri, dar cu o repartizare diferită a suprafeței vitrate (inferioară celei proprii clădirii de birouri). Clădirea considerată Martor a Blocului Conventional a fost analizată prin aplicarea a două metode de determinare a Răspunsului Termic, respectiv Metoda Răspunsului Termic Unitar (RTU) și Metoda ecuației integrale a conducției căldurii (INT). Metoda RTU a fost aplicată structurii multistrat corectată cu influența punților termice, iar metoda INT structurii omogene echivalentă. Performantele caracteristice Blocului Conventional determinate în ambele variante de calcul au fost comparate, și ca urmare a foarte bunei apropieri dintre PEC (RTU) și PEC (INT) pentru simularea dinamică a clădirii de birouri s-a adoptat metoda INT, mult mai rapidă și mai flexibilă. Metoda RTU este considerată metoda exactă de calcul, fapt probat prin validarea sa experimentală [9].

4.2. Modelul matematic utilizat

Ecuația fundamentală de bilanț termic al incintelor/spațiilor ocupate climatizate este:

Temperatura medie a suprafețelor interioare a elementelor de constructie adiacente mediului exterior (natural și construit) se determină din bilantul termic propriu fiecărui tip de element de anvelopă, în funcție de temperatura interioară rezultantă, t_i (τ), și de temperatura exterioară virtuală, $t_{evi}(\tau)$, a fiecărui element de închidere opac / transparent. Valoarea medie spațială $\bar{t}_{ev}(\tau)$ se determină pe baza mediei ponderate cu factorii de cuplaj termic proprii fiecărui element de construcție. La rândul său, temperatura interioară rezultantă se determină ca medie ponderată, în funcție de intensitatea proceselor de transfer de căldură prin convecție și prin radiație, a temperaturii medii volumice a aerului $t_a(\tau)$ și a temperaturii medii radiante a anvelopei clădirii care include atât elementele de constructie interioare, cât și elementele de construcție exterioare. Prin explicitare se ajunge la:

$$\bar{t}_s(\tau) = B_1 t_a(\tau) + B_2 t_P(\tau) + B_3 \bar{t}_{ev}(\tau)$$
 (29)

The thermal balance equation (28) provides:

Din ecuația de bilanț termic (28) se determină:

$$t_a(\tau) = C_1(\tau) \cdot t_P(\tau) + F_1(\tau) \tag{30}$$

where $F_1(\tau)$ is a linear function as follows:

în care F_1 (τ) este o funcție liniară de forma:

$$F_{1}(\tau) = F_{11}(\tau) \cdot Q(\tau) + F_{12}(\tau) \tag{31}$$

The thermal balance equation specific to the inside building components with the average temperature $t_p(\tau)$ leads to the following solution:

Ecuația de bilanț termic proprie elementelor de construcție interioare caracterizate de temperatura medie t_p (τ) conduce la soluția:

$$t_{P}(\tau_{j}) = \left[t_{P}(\tau_{j-1}) - \frac{m_{2}}{D} + \frac{m_{1}}{D}\right] \cdot \exp(-D\Delta\tau) + \frac{m_{2}}{D} + \frac{m_{1}}{D} \cdot \Delta\tau - \frac{m_{1}}{D^{2}}$$
(32)

where:

în care:

$$\begin{cases} \Delta \tau = \tau_{j} - \tau_{j-1} \\ m_{1} = \frac{F_{2}(\tau_{j}) - F_{2}(\tau_{j-1})}{\Delta \tau} \\ m_{2} = F_{2}(\tau_{j-1}) \end{cases}$$
(33)

and function F_2 (τ) expressed according to F_1 (τ) and to the average virtual outdoor temperature $\bar{t}_{ev}(\tau)$ as:

și funcția F_2 (τ) care se exprimă în funcție de F_1 (τ) și de temperatura exterioară virtuală medie \bar{t}_{ev} (τ) sub forma:

$$F_{2}(\tau) = M_{1} \cdot F_{11}(\tau) \cdot Q(\tau) + M_{2} \cdot \bar{t}_{ev}(\tau) + M_{1} \cdot F_{12}(\tau)$$
(34)

The indoor temperatures representative for the thermal comfort are defined:

Se definesc temperaturile interioare reprezentative pentru starea de confort termic:

$$t_i(\tau) = A_1 \cdot t_a(\tau) + A_2 \cdot t_P(\tau) + A_3 \cdot \bar{t}_{av}(\tau) \tag{35}$$

$$t_a(\tau) = C_1(\tau) \cdot t_P(\tau) + F_1(\tau) \tag{30}$$

which is expressed according to $Q\left(\tau\right)$ as well as to the natural climatic parameters $t_{_{e}}\left(\tau\right)$, $I_{_{D}}\left(\tau\right)$, $I_{_{dif}}\left(\tau\right)$ and to synthetic ones, namely $\bar{t}_{_{ev}}\left(\tau\right)$.

care se exprimă în funcție de Q (τ) și de parametrii climatici naturali $t_{_{e}}$ (τ), $I_{_{D}}$ (τ), $I_{_{dif}}$ (τ) și sintetici, respectiv $\bar{t}_{_{ev}}$ (τ). Rezultă două expresii de formă liniară:

$$t_i(\tau_i) = H_1(\tau_i) \cdot Q(\tau_i) + H_2(\tau_i) \tag{36}$$

$$t_a(\tau_i) = H_3(\tau_i) \cdot Q(\tau_i) + H_4(\tau_i) \tag{37}$$

where coefficients $H_1(\tau_j)$, ..., $H_4(\tau_j)$ are determined according to the known value $Q(\tau_{i-1})$.

Based on relations (36) and (37) used as equations, two values $Q(\tau_i)$ are determined, namely:

în care coeficienții $H_1(\tau_j),...,H_4(\tau_j)$ se determină în funcție de valoarea cunoscută $Q(\tau_{i-1})$.

Pe baza relațiilor (36) și (37), utilizate ca ecuații, se determină două valori $Q(\tau_i)$, respectiv:

$$Q_{t_i}(\tau_j) = [t_{i_0} - H_2(\tau_j)] \cdot H_1^{-1}(\tau_j)$$
(38)

$$Q_{t_a}(\tau_j) = [t_{i_0} - H_4(\tau_j)] \cdot H_2^{-1}(\tau_j)$$
(39)

and the following is selected:

și se alege:

$$Q(\tau_{i}) = \max\{Q_{t_{i}}(\tau_{i}), Q_{t_{n}}(\tau_{i})\}$$
(40)

Decision (40) ensures that $t_a(\tau_j) \ge t_{i_0}$, a condition which is useful mainly in the cold season.

If $Q(\tau_j) < 0$, $Q(\tau_j) = 0$ is adopted and $t_i(\tau_j)$ and $t_a(\tau_j)$ are calculated. The following condition is verified:

Prin decizia (40) se asigură că $t_a(\tau_j) \ge t_{i_0}$, condiție utilă în special în sezonul rece.

În cazul în care $Q(\tau_j) < 0$ se adoptă $Q(\tau_j) = 0$ și se calculează $t_i(\tau_j)$ și $t_a(\tau_j)$. Se verifică condiția:

$$t_a(\tau_j) \le t_{i_0 \, \text{max.} \, admis} \tag{41}$$

If condition (41) is not met, additional ventilation is used, namely $n_a(\tau) = n_{a \text{ max}}$, associated to condition:

Dacă nu se respectă condiția (41), se adoptă regimul de ventilare suplimentară, respectiv $n_a(\tau) = n_{a_{max}}$, asociat condiției ca:

$$t_{i_0} \ge t_e(\tau_i) + \Delta t_e \tag{42}$$

If neither condition (42) nor condition (41) are met, the space will start to be artificially cooled so as to preserve value $n_{a \min. admis}$ (τ) in the hours when the space is occupied.

In the hours when the space is not occupied, the procedure is the same; the difference is that if conditions (41) and (42) are simultaneously not met, artificial cooling will be used, associated to value $n_{a.\,\mathrm{min}}$ corresponding to the minimum value of the infiltration rate.

Therefore in the hours when the building is occupied, values n_a (τ_j) are either $n_{a,\,{\rm min.admis}}$, or $n_{a.\,{\rm max}}$, while in the hours when the building is not occupied, either $n_{a,{\rm min}}$, or $n_{a.{\rm max}}$ is used.

The algorithm presented may be modified in terms of an extreme (conditioned) condition referring to function $Q(\tau_i)$ in its module form, namely:

Neîndeplinirea condiției (42), asociată cu neîndeplinirea condiției (41), echivalează cu trecerea la regimul de răcire artificială a spațiului cu menținerea valorii $n_{a \min. admis}$ (τ) în orele de ocupare a spațiilor.

În orele de neocupare se procedează similar cu diferența că în cazul neîndeplinirii simultane a condițiilor (41) și (42) se procedează la răcirea artificială asociată valorii $n_{a.\,\text{min}}$ aferentă valorii minime a ratei de infiltrații proprie ochiurilor mobile etanșe.

Prin urmare în orele de ocupare a clădirii, valorile n_a (τ_j) sunt fie $n_{a,\,{\rm min.admis}}$, fie $n_{a,\,{\rm max}}$, în timp ce în orele în care clădirea nu este ocupată se utilizează fie $n_{a,{\rm min}}$, fie $n_{a,{\rm max}}$.

Algoritmul prezentat poate fi modificat în raport cu o condiție de extremum condiționat care se referă la funcția $Q(\tau_i)$ sub forma sa de modul, respectiv:

$$|Q(\tau_j)| = \min\{|Q(\tau_j)|\}$$
(43)

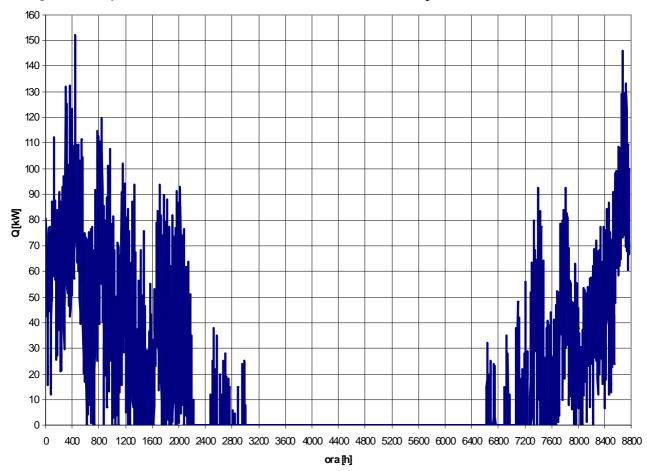
which involves the use of extra (additional) ventilation in the hot season).

This report, which is mainly focused on the analysis of the heating process in highly glazed spaces of the Office type, adopted the analysis of function $Q(\tau_j)$ by the alternating paces procedure previously presented.

care implică utilizarea ventilării suplimentare în sezonul cald.

În lucrarea de față, care urmărește în special analiza procesului de încălzire a spațiilor foarte vitrate de tip Birou, s-a adoptat analiza funcției $Q(\tau_j)$ prin procedura pașilor alternanți, prezentată în cele de mai sus.

4.3. Presentation of results


The diagram in fig. 6 presents the variation $Q(\tau)$ for the cold season, in the case of the office building. The heat demand maximum value is recorded on

4.3. Prezentarea rezultatelor

În graficul din fig. 6 se prezintă variația $Q(\tau)$ pentru sezonul rece, în cazul clădirii de birouri. Valoarea maximă a necesarului de căldură se

the day of 19.01, at 8^{00} h and its value is $Q_{\rm max} = 152.118 \, {\rm kW} \, (t_e = -15.70 \, {\rm ^{\circ}C})$ – we mention that $t_{e \, \rm min} = -16.80 \, {\rm ^{\circ}C}$ at 10^{00} h of the same day, but it is not associated to $Q_{\rm max}$. The heating system operation period (Q > 0) is of 3552 hours, namely 148 equivalent days.

înregistrează în ziua de 19.01, la ora 8^{00} și are valoarea $Q_{\max} = 152,118 \text{ kW}$ ($t_e = -15,70^{\circ}\text{C}$) – de menționat faptul că $t_{e \min} = -16,80^{\circ}\text{C}$ la ora 10^{00} a aceleiași zile, dar nu se asociază cu Q_{\max} . Durata de funcționare a instalației de încălzire (Q > 0) este de 3.552 ore, respectiv 148 zile echivalente.

Fig. 6. Heat demand for the Bucharest office building heating, a representative year (Necesarul de căldură pentru încălzirea clădirii de birouri – București, an reprezentativ)

The extent of the heating season, defined as the extent of the period between the moment of the heating system operation start and that of the operation stop is of 216 days. Of these, about 15 days (in the transition periods) are characterized by a daily average heat flow-rate of less than $20~\mathrm{W/m^2}$.

The diagram in Fig. 7 presents the hourly variation of temperatures t_i (τ) and t_a (τ). It is noticed that since the moment $\tau = 3,520$ h until the moment $\tau = 6,294$ h, during 2,154 h, the indoor temperatures exceed the value of 27°C (27.05 at 15% h-20.09 at 5% h). Peak values of over 30°C and an absolute maximum of 34.9°C are recorded on the day of 06.07, at 17% h. This excessive thermal behaviour is consequent to the extremely high glazing

Durata sezonului de încălzire, definită ca durata intervalului dintre momentul începerii funcționării și momentul încetării funcționării instalației de încălzire, este de 216 zile. Dintre acestea, cca. 15 zile (din perioadele de tranziție) sunt caracterizate de flux termic mediu zilnic de sub 20 W/m².

În graficul din fig. 7 se prezintă variația orară a temperaturilor t_i (τ) și t_a (τ). Se constată că începând cu momentul $\tau = 3.520$ h și încheind cu momentul $\tau = 6.294$ h, pe durata a 2.154 h, temperaturile interioare depășesc valoarea de 27°C (27.05 ora 1500-20.09 ora 500). Se înregistrează vârfuri cu peste 30°C și maxima absolută de 34,9°C în ziua de 06.07, ora 1700. Acest comportament termic excesiv este consecința raportului de vitrare

rate of the N and S facades. We emphasize that the analysis on the support of a model with four thermal zones reveals upper maximum values specific to the rooms on the SOUTHERN façade of the building (36.7°C).

foarte ridicat al fațadelor N și S. Este de subliniat faptul că analiza pe suportul unui model cu patru zone termice pune în evidență maxime superioare proprii incintelor amplasate pe fațada SUD a clădirii (36,7°C).

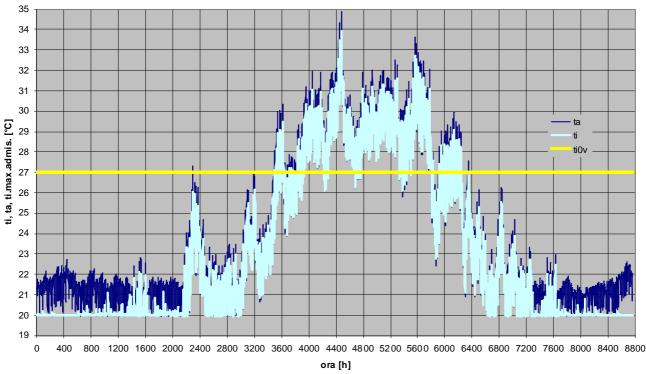


Fig. 7. Indoor temperatures (resulting one and air) specific to office buildings with no air conditioning in the hot season (Temperaturi interioare (rezultantă și aer) caracteristice clădirii de birouri fără climatizare în sezonul cald)

The diagram in Fig. 8 presents in the form of a histogram the monthly heat demand of the main zone, specific to the Conventional Block (based on $Q(\tau)$ hourly values) and to the Office building, based on the $Q(\tau)$ hourly values as well as on the relation that ignores the influence of the thermal capacity of the inside building components (pseudo-steady state conditions, called as such because it uses every moment τ the relation specific to the heat transfer steady-state conditions, but with reference to values $\bar{t}_{ev}(\tau)$). A very good estimation is noticed, by the use of the pseudo-steady state model instead of the hourly model (an error of 2.3% per season: 84.1 kWh / m² an compared to 86.1 kWh / m² year, resulted form the dynamic analysis). The residential condominium type of building has a seasonal heat demand of 89.0 kWh / m². The difference originates in the efficient use of the solar radiation by the glazed façade in the cold season – but the difference of 3 kWh/m² (3.8 %) is insignificant in terms of energy performance.

În graficul din fig. 8 se prezintă sub formă de histogramă necesarul lunar de căldură al zonei principale specific Blocului Convențional (pe baza valorilor orare $Q(\tau)$) și clădirii de Birouri determinat atât pe baza valorilor orare $Q(\tau)$, cât și pe baza relației care ignoră influența capacității termice a elementelor interioare de construcție (regim pseudostaționar, denumit ca atare pentru faptul că utilizează la fiecare moment τ relația proprie regimului staționar de transfer de căldură, dar cu referire la valorile $\bar{t}_{ev}(\tau)$). Se constată o foarte bună estimare prin utilizarea modelului pseudo-staționar în locul modelului orar (eroare de 2,3 % la nivel de sezon: 84,1 kWh / m² an față de 86,1 kWh / m² an, rezultat din analiza dinamică). Clădirea de tip condominiu rezidențial este caracterizată de un necesar sezonier de căldură de 89,0 kWh / m². Diferența provine din utilizarea eficientă a radiației solare de către fatada vitrată în sezonul rece – diferența de 3 kWh / m² (3,8 %) este însă nesemnificativă ca performanță energetică.

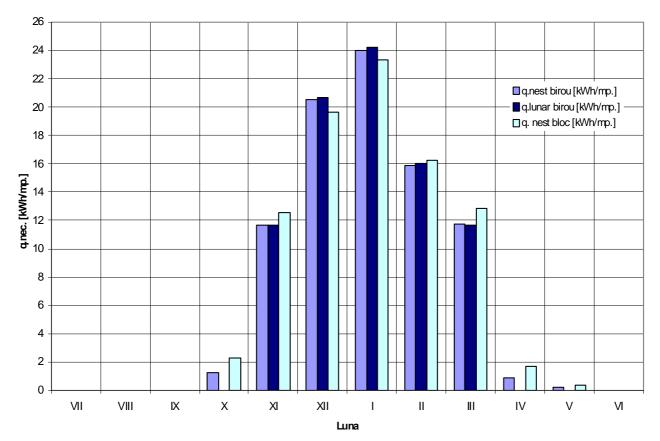


Fig. 8. Specific heat demand for the main zone heating – conventional block and office building – Bucharest, a representative year (Necesarul specific de căldură pentru încălzirea zonei principale – bloc convenţional şi clădire de birouri – Bucureşti, an reprezentativ)

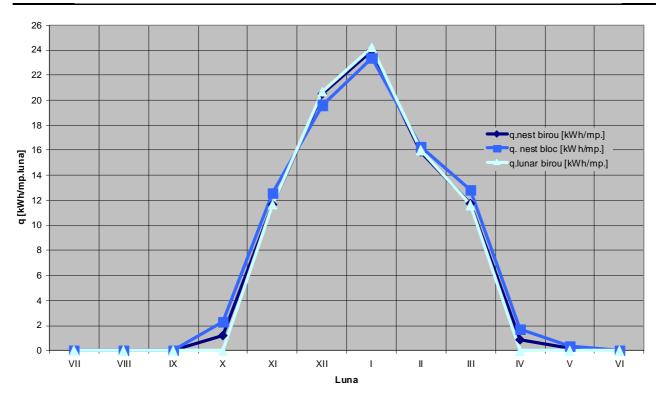
The diagram in Fig. 9 presents the three characteristics as a thermal diagram. It is important to notice the rather significant impact of the calculation model in the transition season; but it is much less important in the heating season. The same conclusions result from the cumulated curves presented in the diagram in Fig. 10.

An analysis extended to the hot season as well emphasized the heat/cold demand variation during the whole year. The significant values of the cold demand in the office building are noticed; these values can be emphasized only by dynamic modeling (Fig. 11).

The diagram in Fig. 12 presents variations t_i (τ) and t_a (τ) during the whole year, according to the energy management processes. The energy-related characteristics of the Conventional Block (determined by dynamic modeling in the RTU and INT variants) and of the Office Building (dynamic modeling by INT method) are presented in the diagram of Fig. 13 as energy demand monthly indicators.

Two important conclusions are drawn:

1. The RTU and INT models actually lead to the same values:


Sub formă de diagramă termică cele trei caracteristici se prezintă în graficul din fig. 9. Se observă impactul relativ semnificativ al modelului de calcul în sezonul de tranziție, dar puțin important la nivel de sezon de încălzire. Aceleași constatări rezultă și din curbele cumulate prezentate în graficul din fig. 10.

Extinderea analizei și asupra sezonului cald pune în evidență variația necesarului de căldură / frig pe durata întregului an. Se constată valorile semnificative ale necesarului de frig în cazul clădirii de birouri, valori care nu pot fi evidențiate decât prin modelare dinamică (fig. 11).

În graficul din fig. 12 se prezintă variațiile t_i (τ) și t_a (τ) pe durata întregului an, în funcție de procesele de gestiune energetică. Sub forma indicatorilor lunari de necesar de energie, în graficul din fig. 13 se prezintă caracteristicile energetice ale Blocului Convențional (determinate prin modelare dinamică în variantele RTU și INT) și ale clădirii de Birouri (modelare dinamică prin metoda INT).

Se desprind două concluzii importante:

1. practic modelele RTU și INT conduc la aceleași valori;

Fig. 9. Heat demand monthly values – space heating: conventional block and office building – Bucharest (Valori lunare ale necesarului de căldură – încălzire spații: clădire bloc convențional și clădire birouri – București)

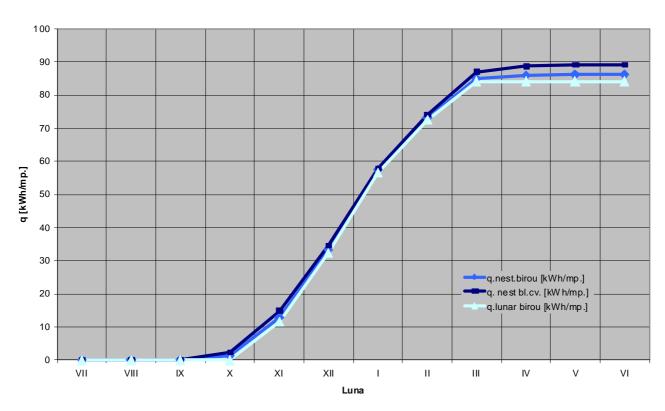
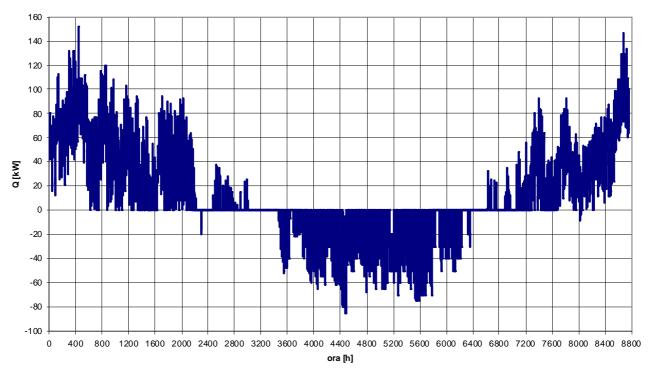
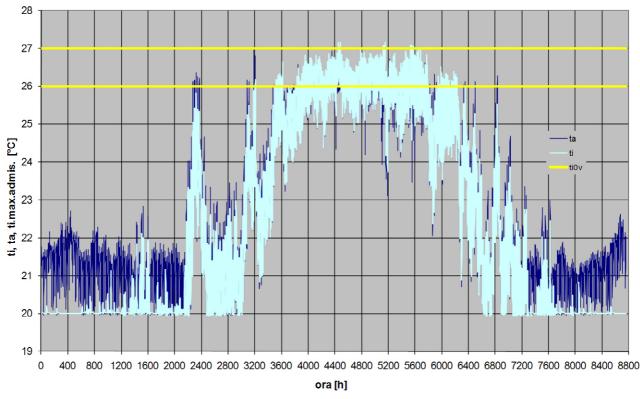




Fig. 10. Cumulated heat demand – conventional block and office building – Bucharest, representative year (Necesarul de căldura cumulat bloc convențional și clădire birouri – București, an reprezentativ)

Fig. 11. Heat / cold demand for heating / cooling – office building – Bucharest, representative year (Necesarul de căldură / frig pentru încălzirea / răcirea clădirii de birouri – Bucureşti, an reprezentativ)

Fig. 12. Indoor temperatures (resulting and air) specific to the office building conditioned in the hot season (Temperaturi interioare (rezultantă şi aer) caracteristice clădirii de birouri cu climatizare în sezonul cald)

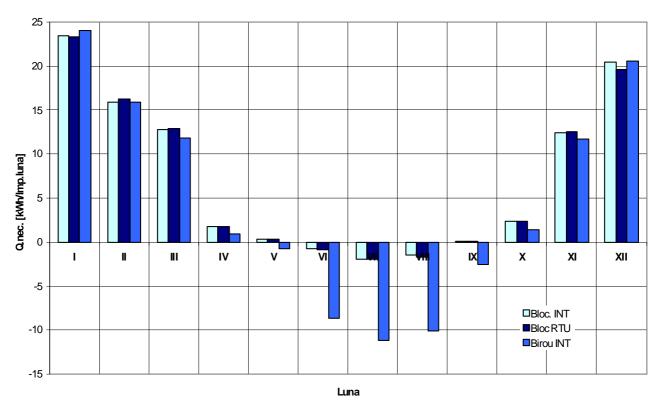


Fig. 13. Heat / cold monthly specific demand for the conventional block and for the office building –
Bucharest, representative year (Necesarul specific lunar de căldură /
frig aferent blocului convenţional şi clădirii de birouri –
Bucureşti, an reprezentativ)

2. The dynamic model reveals important differences un-favouring the Office Building in the hot season; in the cold season the differences between Block and Office are insignificant.

The heat/cold demand annual amounts (summed) provide the following values (Fig. 14):

1. Heating:

Block (RTU): $89.1 \text{ kWh} / \text{m}^2$ Block (INT): $89.4 \text{ kWh} / \text{m}^2$ Office (INT): $86.2 \text{ kWh} / \text{m}^2$

2. Cooling:

Block (RTU): $4.6 \text{ kWh}/\text{m}^2$ Block (INT): $4.2 \text{ kWh}/\text{m}^2$ Office (INT): $33.3 \text{ kWh}/\text{m}^2$

3. Total:

Block (RTU): 93.7 kWh / m² Block (INT): 93.6 kWh / m² Office (INT): 119.5 kWh / m²

therefore a total value of the thermal energy demand (space heating and cooling) specific to the offices which is higher by 27.4 %.

2. modelul dinamic relevă diferențe notabile în defavoarea clădirii de tip Birouri în sezonul cald, iar în sezonul rece diferențele sunt nesemnificative între Bloc și Birouri.

Sumele anuale ale necesarului de încălzire / frig relevă următoarele valori (fig. 14):

1. Încălzire:

Bloc (RTU): 89,1 kWh / m² Bloc (INT): 89,4 kWh / m² Birou (INT): 86,2 kWh / m²

2. Răcire:

Bloc (RTU): 4,6 kWh / m² Bloc (INT): 4,2 kWh / m² Birou (INT): 33,3 kWh / m²

3. Total:

Bloc (RTU): 93,7 kWh / m² Bloc (INT): 93,6 kWh / m² Birou (INT): 119,5 kWh / m²

deci o valoare totală a necesarului de energie termică (încălzire și răcire spații) proprie birourilor superioară cu 27,4 %.

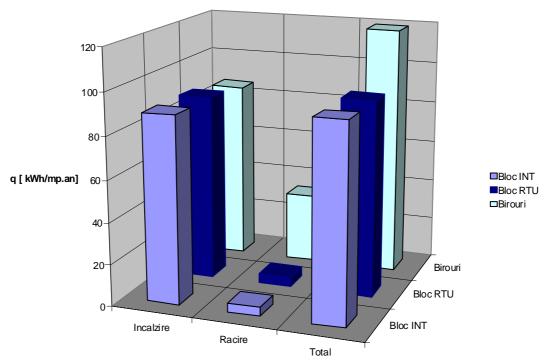


Fig. 14. The heat / cold demand annual amonnts for conventional bloc of fats and office building – Bucharest typical year (Necesarul anual de căldură / frig şi total utilități termice pentru Blocul convenţional şi pentru Clădirea de birouri – Bucureşti, an reprezentativ)

5. CASE STUDY – DETERMINATION OF THE HEAT DEMAND OF A COLLECTIVE DWELLING BUILDING (BLOCK OF FLATS)

5.1. Calculation assumptions

We further present a case study on the comparative application of the space heating energy demand and consumption, on the support of a collective dwelling building. The block of flats type building is representative for the current situation of the built stock, as it is defined based on a statistical analysis focused on the entire stock on such buildings in Romania's urban environment. The NP 048-2006 method (experimentally validated) and the method in the Mc 001/2-2006 technical regulation based on the European standard SR EN 13790:2003 were simultaneously used.

For the calculation according to MC 001-2006, the thermal capacity of the inner side of the outside building components was also considered.

The constructive structure of the building envelope is characteristic for the condominium type blocks built in the last few years.

5. STUDIU DE CAZ-DETERMINAREA NECESARULUI DE CĂLDURĂ AL UNEI CLĂDIRI DE LOCUIT COLECTIVE (BLOC DE LOCUINȚE)

5.1. Premize de calcul

În cele ce urmează se prezintă un studiu de caz privind aplicarea comparată a modelelor de calcul a necesarului și consumului de energie pentru încălzirea spațiilor, pe suportul unei clădiri de locuit colective. Clădirea de tip bloc de locuințe este reprezentativă pentru situația actuală a fondului construit, fiind definită pe baza unei analize statistice care a vizat ansamblul clădirilor de tip bloc de locuințe amplasate în mediul urban din România. S-au utilizat in paralel metoda (validata experimental) NP 048-2006 si metoda din reglementarea tehnica Mc 001 / 2-2006 bazata pe standardul european SR EN 13790:2003.

Pentru calculul conform MC 001-2006 s-a considerat și capacitatea termică a părții interioare a elementelor de construcție exterioare.

Structura constructivă a anvelopei clădirii este caracteristică pentru blocurile de tip condominiu realizate în perioada ultimilor ani.

The building is located in Bucharest, climatic zone 2, for which the climatic data considered is that characterizing the climatic year [10]. The representative climate is centralized, in the form of monthly average temperatures and solar radiation intensities, in Table 3.

5.2. Calculation of the space heating energy demand according to the hourly pace model – INCERC model

The calculation of the energy demand for the heating of the occupied spaces (apartments) was performed by using the RTU Method (Unitary Thermal Response) on the multi-layer structure corrected by the thermal bridges influence. The space heating process modeling was performed during the whole year (8,760 h) in the hypothesis that the main zone heating meets the double condition (31). In the hours of the transition season, the indoor temperatures $t_a(\tau)$, $t_i(\tau)$ freely vary by values $\geq t_{i_{o(i)}}$. The heating system intermittently controlled operation or the night ventilation in the hot season and in the hours of the cold season when the maximum admitted value is exceeded are not used. Function $Q(\tau) = 0$ if its design value $Q(\tau) \le 0$ in which case $t_i(\tau)$ and $t_a(\tau)$ are determined.

The hourly values $Q(\tau) > 0$ in the cold season were determined by simulation, which were further used in determining the heat demand monthly values expressed in [kWh / m² month] in terms of the S_{LOC} useful area.

Clădirea este amplasată în Municipiul București, zona climatică 2, pentru care se consideră datele climatice caracteristice anului climatic tip [10]. Clima reprezentativă este centralizată, sub forma temperaturilor și intensităților medii lunare ale radiației solare, în tabelul 3.

5.2. Calculul necesarului de energie pentru încălzirea spațiilor conform modelului cu pas orar – model INCERC

Calculul necesarului de energie pentru încălzirea spatiilor ocupate (apartamente) a fost efectuat prin aplicarea Metodei Răspunsului Termic Unitar (RTU) structurii multistrat corectată cu influența punților termice. Modelarea procesului de încălzire a spațiilor s-a realizat pe durata întregului an (8.760 h) în ipoteza în care încălzirea zonei principale se realizează cu respectarea dublei condiții (31). În orele sezonului de tranziție temperaturile interioare $t_{a}\left(\tau\right)$, $t_{i}\left(\tau\right)$ variază liber cu valori $\geq t_{i_{a(i)}}$. Nu se practică funcționarea cu intermitență controlată a sistemului de încălzire și nici ventilarea nocturnă în sezonul cald și în orele din sezonul rece în care se depășeste valoarea maxim admisă. Funcția $Q(\tau) = 0$ dacă valoarea sa de calcul $Q(\tau) \le 0$, caz în care se determină $t_i(\tau)$ și $t_a(\tau)$.

Prin simulare s-au determinat valorile orare $Q(\tau) > 0$ în sezonul rece și pe baza acestora s-au determinat valorile lunare ale necesarului de căldură exprimate în [kWh / m² lună] prin raportare la suprafața utilă S_{LOC} .

Representative climate – Bucharest (Clima reprezentativă – Bucureşti)

MONTH Ш Ш ٧ VI VIII XΙ XII IT SOUTH 69.6 87,5 92.5 73.0 81.8 100.4 109.3 74,3 80.4 75.8 99.3 68.1 IT WEST 29.2 48.7 63.0 71.5 82.3 92.5 106.2 99.0 67.9 46.7 28.7 23.1 IT NORTH 14,2 39,0 57,1 64,2 45,0 22,7 12,5 20,3 28,6 62,6 31,4 16,1 IT EAST 45,3 125,9 129,9 38,8 32,9 31,1 71,0 91,1 123,8 134,9 101,0 80,9 IT Horizontal 49,2 75,8 116,1 147,8 187,8 211,7 229,3 206,4 142,8 99,2 55,6 42,6 ld - Vertical 14,2 20,3 28,5 37,0 41,8 44,3 41,1 36,1 30,4 22,7 16,1 12,5 Id - Horizontal 28,4 40,6 56,9 74,0 83,7 88,7 82,2 72,1 60,8 45,5 32,2 24,9 Outdoor temp. [°C] -2,10 1,26 4,52 13,82 15,79 21,06 21,62 21,27 16,59 11,51 5,23 0,17

Table 3.

The diagram in Fig. 15 presents the variation $Q(\tau)$ in the cold season for the block type building. The heat demand maximum value is recorded on 19.01, at 8^{00} h and its value is $Q_{\text{max}} = 101.45$ kW ($t_e = -15.70$ °C) — we mention that $t_{e \text{ min}} = -16.80$ °C at 10^{00} h on the same day, but it is not associated to Q_{max} .

The heating season (Q > 0) lasts 216 days.

The diagram in Fig. 16 presents the monthly heat demand of the main zone, specific to the Conventional Block (based on $Q(\tau)$ hourly values).

The space heating annual energy demand (in the main zone – apartments) is $165\,403\,kWh/year$, namely the specific demand in terms of the heated spaces useful area, $89.06\,kWh/m^2year$.

5.3. Calculation of the space heating energy demand according to the (NP 048-2006) monthly calculation model

The calculation is performed according to the alternative method included in Mc 001-2006, that is the NP 048-2006 method, by determining the corrected number of degree-days in the building thermal diagram; the secondary zones temperatures (staircase and basement) are determined by the monthly thermal balance of these spaces, according to chapter I.10 of Mc 001 / 1-2006.

The calculation results are further presented (fig. 17):

- The annual heat consumption for heating in the heated spaces is $Q_{inc}^{an} = 159.67 \text{ MWh/}$ year.
- The annual heat consumption for heating at the connection to the heat supply system is

$$Q_{S_{inc}}^{an} = 185.97 \text{ MWh/year.}$$

- The specific annual consumption for heating the building spaces, namely the heated spaces is $q_{inc}^{an} = 89.3 \text{ kWh}/\text{m}^2\text{year}$.
- The specific annual heat consumption for the heating of the building spaces at the level of the heat source (connection to the district heating

network) is
$$q_{S_{inc}}^{an} = 100,1 \text{ kWh/m}^2\text{year.}$$

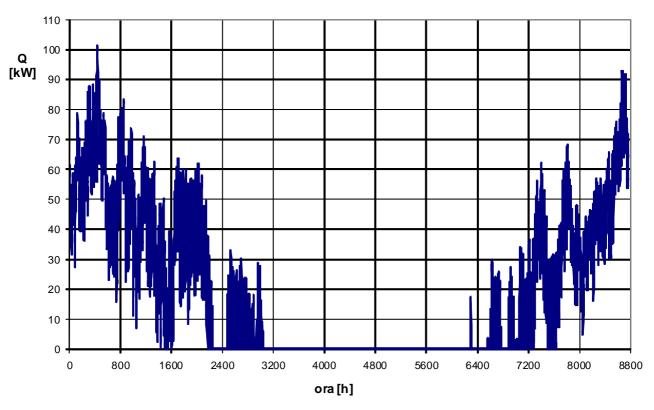
În graficul din fig. 15 se prezintă variația Q (τ) pentru sezonul rece, în cazul clădirii de tip bloc de locuințe. Valoarea maximă a necesarului de căldură se înregistrează în ziua de 19.01, la ora 8^{00} și are valoarea $Q_{\rm max}=101,45$ kW ($t_e=-15,70^{\circ}$ C) – de menționat faptul că $t_{e\,{\rm min}}=-16,80^{\circ}$ C la ora 10^{00} a aceleiași zile, dar nu se asociază cu $Q_{\rm max}$.

Durata sezonului de încălzire (Q > 0) este de 216 zile.

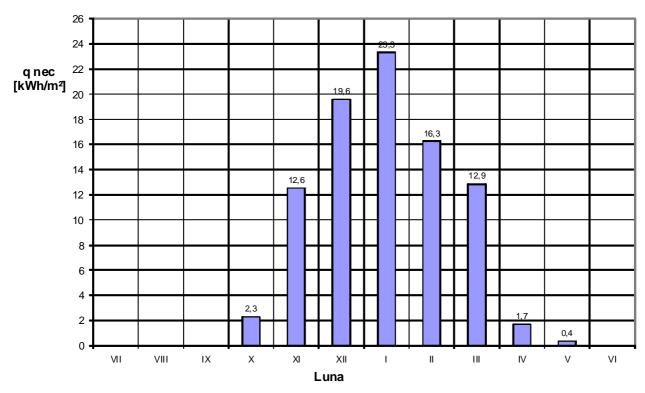
În graficul din fig. 16 se prezintă necesarul lunar de căldură al zonei principale specific Blocului Convențional (pe baza valorilor orare $Q(\tau)$).

Necesarul de energie anual pentru încălzirea spațiilor (la nivelul zonei principale – apartamente) este de 165.403 kWh / an, respectiv necesarul specific obținut prin raportare la aria utilă a spațiilor încălzite de 89,06 kWh / m²an.

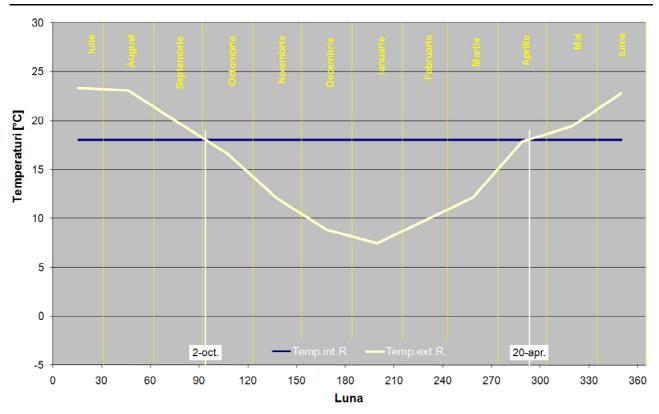
5.3. Calculul necesarului de energie pentru încălzirea spațiilor conform modelului de calcul lunar (NP 048-2006)


Calculul de efectuează în conformitate cu metoda alternativă cuprinsă în Mc 001-2006, respectiv metoda NP 048-2006, prin determinarea numărului corectat de grade-zile din diagrama termică a clădirii, iar temperaturile zonelor secundare (casa scărilor și subsolul blocului) determinate prin bilanțul termic lunar al spațiilor menționate, conform cap. I.10 din Mc 001 / 1-2006.

Rezultatele calculului se prezintă în cele ce urmează (fig. 17):


- Consumul anual de căldură pentru încălzire, la nivelul spațiilor încălzite este $Q_{inc}^{an} = 159,67 \text{ MWh/an}.$
- Consumul anual de căldură pentru încălzire, la nivelul racordului la sistemul de alimentare cu

căldură este
$$Q_{S_{inc}}^{an}$$
 = 185,97 MWh/an.


- Consumul specific anual de căldură pentru încălzirea spațiilor clădirii, la nivelul spațiilor încălzite q_{inc}^{an} = 89,3 kWh/m²an.
- Consumul specific anual de căldură pentru încălzirea spațiilor clădirii, la nivelul sursei de căldură (racordul la rețeaua de termoficare) este $q_{S_{inc}}^{an}=100,1~\mathrm{kWh}\,/\,\mathrm{m^2an}.$

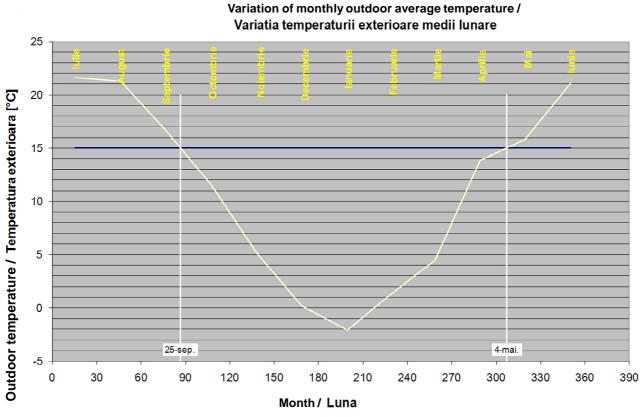

Fig. 15. Heat demand for the block heating – Bucharest, representative year (Necesarul de căldură pentru încălzirea clădirii de tip bloc – Bucureşti, an reprezentativ)

Fig. 16. Specific heat demand for the main zone heating – conventional block – Bucharest, representative year (Necesarul specific de căldură pentru încălzirea zonei principale – bloc convențional – Bucureşti an reprezentativ)

Fig. 17. Building thermal diagram [11] – conventional block – Bucharest, representative year (Diagrama termică a clădirii [11] – bloc convențional – București an reprezentativ)

Fig. 18. Building thermal diagram – conventional block – Bucharest, representative year (Diagrama termică a clădirii – bloc convențional – București an reprezentativ)

5.4. Calculation of the space heating energy demand according to the model in the heating period (Mc 001-2006)

The calculation is performed according to the seasonal calculation method of [12], by preliminarily determining the heat losses and inputs based on the standardized extent of the heating season and by determining the heating season corrected duration. The secondary zones temperatures (staircase and basement) are determined by the monthly thermal balance of these spaces, according to Mc 001 / 1-2006.

The final thermal diagram specific to the building under analysis is presented in the diagram of Fig. 18.

The calculation results are the following:

- The annual heat consumption for heating in the heated spaces (apartments and staircase) is $Q_b = 228.32 \text{ MWh/year.}$
- The annual heat consumption for heating at the connection to the heat supply system is $Q_{th} = 272.24 \text{ MWh}/\text{year}.$

5.5. Compared analysis of the results obtained

The synthetic results of using the three calculation methods – INCERC method with hourly pace, seasonal calculation method of Mc 001-2006 and alternative method of Mc 001 2006 (NP 048-2006) – are presented in Table 4.

According to the hourly pace INCERC model and to the NP 048-2006 model, the main heated zone includes apartments while the staircase is considered a secondary zone together with the

5.4. Calculul necesarului de energie pentru încălzirea spațiilor conform modelului pe perioada de încălzire (Mc 001-2006)

Calculul de efectuează în conformitate cu metoda de calcul sezonier din [12], prin determinarea preliminară a pierderilor și a aporturilor de căldură pe baza duratei standardizate a sezonului de încălzire și determinarea duratei corectate a sezonului de încălzire. Temperaturile zonelor secundare (casa scărilor și subsolul blocului) se determină prin bilanțul termic lunar al spațiilor menționate, conform Mc 001/1-2006

Diagrama termică finală proprie clădirii analizate se prezintă în graficul din fig. 18.

Rezultatele calculului se prezintă în cele ce urmează:

- Consumul anual de căldură pentru încălzire, la nivelul spațiilor încălzite (apartamente și casa scărilor) este $Q_h = 228,32 \text{ MWh/an}$.
- Consumul anual de căldură pentru încălzire, la nivelul racordului la sistemul de alimentare cu căldură este $Q_{\it fh} = 272,24~\rm MWh/an$.

5.5. Analiza comparată a rezultatelor obținute

Rezultatele sintetice ale aplicării celor trei metode de calcul – metoda INCERC cu pas orar, metoda de calcul sezonier din Mc 001-2006 și metoda alternativă din Mc 001-2006 (NP 048-2006) – sunt prezentate în tabelul 4.

În modelul INCERC cu pas orar și în modelul NP 048-2006 zona principală încălzită este formată din apartamente, iar zona casei scărilor este

Table 4.

Unit	INCERC calculation - hourly pace	NP 048-2006 calculation	Diff.	Deviation [%]	Mc 001 / 2-2006 calculation	Diff.	Deviation [%]
Dz [days]	216,0	199,3	-16,7	-7,7%	220,8	4,8	2,2%
Sinc [m²]	1.858,0	1.858,0	0,0	0,0%	2.393,8	535,8	28,8%
Vinc [m²]	5.016,0	5.016,0	0,0	0,0%	6.409,0	1.393,0	27,8%
Q_loc [MWh / year]	165,4	159,7	-5,7	-3,4%	-	-	-
Qinc [MWh / year]	171,5	165,9	-5,6	-3,3%	228,3	56,8	33,1%
Qs_inc [MWh / year]	192,2	186,0	-6,2	-3,2%	272,2	80,1	41,7%

technical basement of the building. In the first model, the heat demand in the main zone is determined by dynamic calculation (hourly pace). The next step is the integration in monthly time units. The heat demand in the staircase space is determined by using the model specific to secondary sub-zones, which also provides the thermal flow dissipated in the technical basement. The second model (NP 048-2006 with monthly pace) provides the heat demand in the apartments as well as in the staircase secondary zone in the previously described form. In the third model (Mc 001 2006), the main heated zone includes the staircase as well and its temperature is determined by thermal balance. Therefore the annual energy consumption values provided by these methods are comparable, but the specific consumption values cannot be compared as they are based on two different useful areas.

The results obtained confirm the proper use of the NP 048-2006 monthly calculation model (-3.3% error compared to the hourly pace transient model), namely inadmissible deflections of the seasonal calculation model, Mc 001 / 2-2006, compared to the transient model (33% and 41.7% respectively).

6. CASE STUDY – DETERMINATION OF AN OFFICE BUILDING HEAT DEMAND

The approach is similar to that concerning the block of flats; the only differences refer to the building glazing rate, the ventilation conditions and the occupation rate. This chapter presents the synthetic results in Figures 19...21 and in Table 5.

The space heating annual energy demand, determined by the hourly pace INCERC method (building integral equation) is of 159,532 kWh/year, namely the specific demand in terms of the heated spaces useful area, 85.86 kWh/m²year.

The results obtained confirm the accurate use of the monthly calculation model (0.5% error compared to the transient model), namely inadmissible deflections of the seasonal calculation model compared to the transient model (24% in the

considerată zonă secundară alături de subsolul tehnic al clădirii. În primul model se determină necesarul de căldură la nivelul zonei principale prin calcul dinamic (pas orar). Pasul următor este acela de integrare la nivel de unităti de timp lunar. Necesarul de căldură la nivelul casei scărilor se determina prin aplicarea modelului propriu subzonelor secundare, model care furnizează și fluxul termic disipat la nivelul subsolului tehnic al clădirii În cel de-al doilea model (NP 048-2006 cu pas lunar) rezultă necesarul de căldură atât la nivelul apartamentelor, cât și la nivelul zonei secundare a casei scărilor sub forma susmentionată. În cel de-al treilea model analizat (Mc 001-2006) zona principală încălzită conține și casa scărilor, a cărei temperatură se determină prin bilant termic. Prin urmare valorile consumurilor anuale de energie sunt comparabile între metode, dar valorile consumurilor specifice nu pot fi comparate deoarece acestea rezultă prin raportare la două suprafețe utile diferite.

Rezultatele obținute atestă corecta utilizare a modelului de calcul lunar NP 048-2006 (eroare de -3.3% față de modelul nestaționar cu pas orar), respectiv abateri inadmisibile ale modelului de calcul sezonier, Mc 001 / 2-2006, în raport cu modelul nestaționar (33 % respectiv 41,7%).

6. STUDIU DE CAZ - DETERMINAREA NECESARULUI DE CĂLDURĂ AL UNEI CLĂDIRI DE BIROURI

Abordarea este similară cu cea proprie blocului de locuințe cu singurele diferențe legate de modificarea raportului de vitrare al clădirii, regimul de ventilare și de ocupare al clădirii. În acest capitol se prezintă rezultatele sub forma sintetică în cadrul figurilor 19...21, respectiv tabelul 5.

Necesarul de energie anual pentru încălzirea spațiilor, determinat prin metoda INCERC cu pas orar de timp (ecuația integrală a căldurii) este de 159.532 kWh / an, respectiv necesarul specific obținut prin raportare la aria utilă a spațiilor încălzite de 85,86 kWh / m²an.

Rezultatele obținute atestă corecta utilizare a modelului de calcul lunar (eroare de 0,5 % față de modelul nestaționar), respectiv abateri inadmisibile ale modelului de calcul sezonier în raport cu modelul nestaționar (24 % la nivelul spațiilor încălzite,

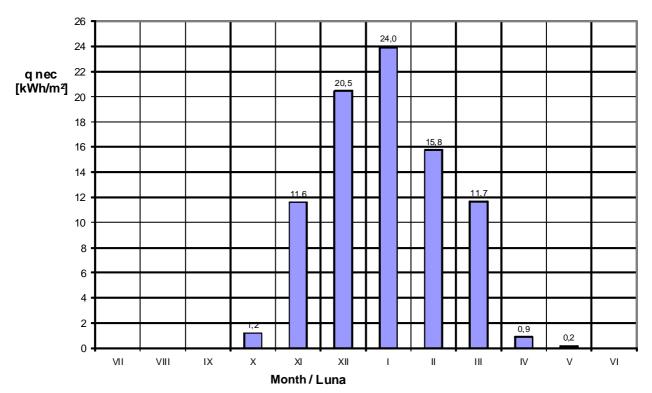
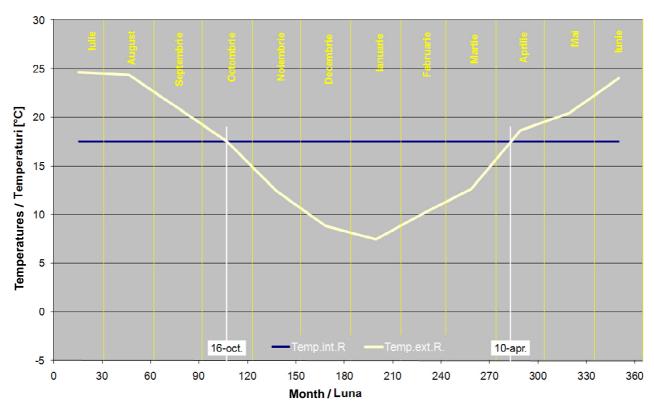
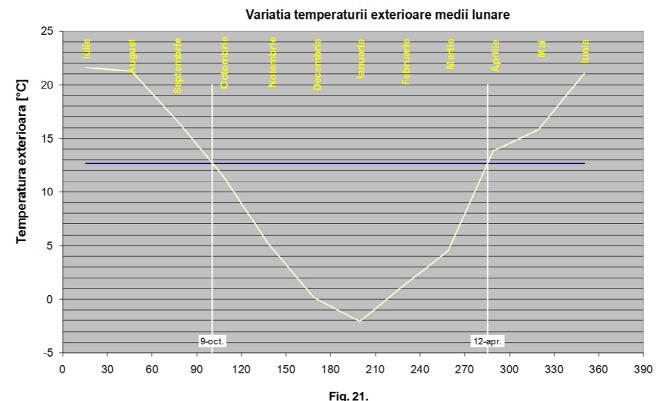




Fig. 19. Specific monthly heat demand for the office building heating – Bucharest, representative year (based on Q (t) hourly values)

(Necesarul lunar specific de căldură pentru încălzirea clădirii birouri – București an reprezentativ (pe baza valorilor orare Q (τ)))

Fig. 20. Building thermal diagram (NP 048-2006) – office building – Bucharest, representative year (Diagrama termică a clădirii (NP 048-2006) – clădire birouri – Bucureşti, an reprezentativ)

(Diagrama termică finala a clădirii (Mc 001 / 2-2006) – bloc convențional – București, an reprezentativ)

Sinteza rezultatelor

Table 5.

Mărime	Calcul INCERC pas orar	Calcul NP048- 2006	Dif.	Abatere [%]	Calcul Mc001 / 2 - 2006	Dif.	Abatere [%]
Dz [zile]	214,0	179,6	-34,4	-16,1%	184,6	-29,4	-13,8%
Sinc [m²]	1.858,0	1.858,0	0,0	0,0%	2.393,8	535,8	28,8%
Vinc [m²]	5.016,0	5.016,0	0,0	0,0%	6.409,0	1.393,0	27,8%
Q_loc [MWh / an]	159,5	160,4	0,8	0,5%	•	-	-
Qinc [MWh / an]	165,4	166,2	0,9	0,5%	204,3	39,0	23,6%
Qs_inc [MWh / an]	184,9	185,9	1,0	0,6%	243,0	58,2	31,5%

heated spaces and 31.5% at the connection to the thermal energy source).

respectiv 31,5 % la nivelul racordului la sursa de energie termică).

7. CONCLUSIONS

- 1. The aim of the report is to experimentally test, on the support of the CE INCERC Bucharest experimental building, the calculation models known so far, in order to assess the occupied spaces heat demand in the cold season.
- **2.** CE INCERC Bucharest is operational since 2004 (the solar space is operational since 2005)

7. CONCLUZII

- 1. Scopul lucrării a fost acela de a testa experimental, pe suportul clădirii experimentale CE INCERC București, modelele de calcul cunoscute până în prezent, pentru evaluarea necesarului de căldură al spațiilor ocupate în sezonul rece.
- **2.** CE INCERC București este în funcțiune din anul 2004 (cu funcționarea spațiului solar din 2005)

and functions as a full-scale laboratory for the experimental analysis of the characteristic processes of transfer from the occupied spaces.

- **3.** The building and the thermal/cooling systems are equipped with sensors for taking over the intensive and extensive parameters as well as with data primary storage and processing equipment.
- **4.** The heating of CE INCERC Bucharest is performed from an electrical source which allows the accurate metering of the heat supplied to the building.
- **5.** The climatic parameters are continuously measured (I_T, I_J, t_v) .
- **6.** In order to test the monthly pace calculation model, the calculation instrument specific to NP 048-2006 was used; it was useful in the calculation for periods of T > 5 consecutive days, in determining the heat demand for the 2008-2009 cold season.
- 7. The calculation error for the season (153 days of measurement) between the measured and calculated heat demand was of 0.61%, an exceptional value confirming the phenomenological nature of the INCERC method, NP 048-2006.
- **8.** Taking into account the CE INCERC equipping with a ventilated solar space ($V = 102.1 \,\mathrm{m}^3/\mathrm{h}$, namely 0.61 exch/h), a further concern was the modeling of the dynamic processes specific to the heat transfer through the building components, including the use of the pre-heated air exhausted in the building. A model specific to the hourly pace heat transfer variable conditions was carried out.
- **9.** The experimental validation tests covered a period of 57 days, a number sufficient to statistically validate the results.
- 10. This report presents the mathematical model concerning the analysis of the building dynamic thermal response in current heating conditions, with reference to the evolution in time of the heat demand and of the significant indoor temperatures. The calculation pace will be 1 hour. The model is recurrent decisional with alternative paces.
- 11. The experimental validation on the support of the period of 57 days (06.01-04.03.2009), by

- și îndeplinește rolul de laborator la scară naturală pentru analiza experimentală a proceselor de transfer de proprietate din spații ocupate.
- **3.** Clădirea și instalațiile termice / de răcire sunt echipate cu senzori pentru preluarea parametrilor intensivi și extensivi și cu echipament de stocare și prelucrare primară a datelor.
- **4.** Încălzirea CE INCERC București se realizează cu o sursă electrică, ceea ce permite contorizarea exactă a cantității de căldură furnizată clădirii.
- **5.** Parametrii climatici sunt măsurați continuu (I_T, I_d, t_o) .
- **6.** În scopul testării modelului de calcul cu pas de timp lunar, s-a utilizat instrumentul de calcul propriu NP 048-2006, util calculului pe durate de timp T > 5 zile consecutive, pentru determinarea necesarului de căldură în sezonul rece 2008-2009.
- **7.** Eroarea de calcul la nivelul sezonului (153 de zile de măsurări) între necesarul de căldură măsurat și cel calculat a fost de 0,61 %, valoare excepțională care confirmă caracterul fenomenologic al metodei INCERC, NP 048-2006.
- **8.** Dată fiind dotarea CE INCERC cu spațiu solar ventilat ($V = 102,1 \text{ m}^3/\text{ h}$, respectiv 0,61 sch / h), o a doua preocupare s-a axat pe modelarea proceselor dinamice proprii transferului de căldură prin elementele componente ale clădirii, inclusiv a utilizării aerului preîncălzit refulat în clădire. S-a elaborat un model propriu regimului variabil de transfer de căldură cu pas orar.
- **9.** Testele de validare experimentală au cuprins un interval de timp de 57 zile, număr suficient pentru a valida statistic rezultatele.
- 10. Lucrarea prezintă modelului matematic de analiză a răspunsului termic dinamic al clădirii în condiții curente de încălzire, cu referire la evoluția temporală a necesarului de căldură și al temperaturilor interioare semnificative. Pasul de calcul se va considera de 1 oră. Modelul este unul de tip recurent-decizional cu pași alternativi.
- **11.** Validarea experimentală pe suportul intervalului de 57 de zile (06.01-04.03.2009) prin

the measurements performed on the CE INCERC Bucharest building attest the accuracy of the hourly calculation model compared to the values provided by measurements and to those provided by the monthly calculation (NP 048-2006). The deflections of 1.45 %, and 2.2 % respectively validate the hourly calculation model as they have no actual physical significance. This report presents a phenomenological analysis of the building transfer functions synthesized as functions t_{ev} (τ), which attest their macro and also hourly phenomenological objectivity.

- 12. The case studies are focused on the simultaneous use of the hourly pace INCERC model, experimentally validated in the cold season 2008-2009 on the support of the CE INCERC Bucharest experimental building, of the NP 048-2006 monthly pace alternative calculation model (updated in terms of heat transfer at the building-ground-underground heat transfer and of the determination of the thermodynamic parameters specific to the building secondary zones in terms of the NP 048-2000 model) and of the calculation model specific to the Mc 001/2-2006 methodology by implementing the provisions of the European standards (SR EN 13790).
- **13.** The synthesis of the calculations performed on the support of the conventional block of flats emphasizes the difference of only 3.3% between the results provided by the INCERC hourly calculation model and the NP 048-2006 (INCERC) model on one hand and, on the other hand, the unacceptable difference between the results of the INCERC dynamic calculation model and the Mc 001/2-2006 calculation method (according to the European standards) of 33.1% concerning the consumption specific to heated spaces and of 3.2% and 41.7% respectively, concerning the heat consumption at the building connection to the heating system. We emphasize that the witness—the dynamic calculation model—is experimentally validated.
- **14.** As concerns the analysis of the **office building**, it uses the same algorithm in comparing the results, namely the INCERC hourly pace dynamic model, NP 048-2006 updated, (INCERC) and Mc 001 / 2-2006.
- **15.** The synthesis of the calculations **on the support of the office building** emphasizes the difference of only 0.5 % between the results

- măsurările efectuate în clădirea CE INCERC București atestă corectitudinea modelului de calcul orar prin comparare cu valorile rezultate din măsurări și cu cele rezultate din calculul lunar (NP 048-2006). Abaterile de 1,45 %, respectiv de 2,2 %, validează modelul orar de calcul, neavând practic nici o semnificație fizică. Lucrarea prezintă o analiză fenomenologică a funcțiilor de transfer ale clădirii sintetizate sub forma funcțiilor t_{ev} (τ), care atestă obiectivitatea fenomenologică a acestora la nivel macro, dar și la nivel orar.
- 12. Studiile de caz vizează aplicarea în paralel a modelului INCERC cu pas orar, validat experimental în sezonul rece 2008-2009 pe suportul clădirii experimentale CE INCERC București, cu modelul de calcul alternativ cu pas lunar NP 048-2006 (cu actualizări în ceea ce privește transferul de căldură la frontiera clădire-sol / subsol și determinarea parametrilor termodinamici proprii zonelor secundare ale clădirii in raport cu modelul NP 048-2000) și cu modelul de calcul propriu metodologiei Mc 001 / 2-2006 prin preluarea prevederilor standardelor europene (SR EN 13790).
- 13. Sinteza calculelor pe suportul clădirii de tip bloc convențional relevă diferența de numai 3,3 % dintre rezultatele furnizate de Modelul de calcul orar INCERC și modelul NP 048-2006 (INCERC) și diferența inacceptabilă dintre rezultatele modelului de calcul dinamic INCERC și metoda de calcul Mc 001 / 2-2006 (conform standardelor europene) de 33,1 %, cu privire la consumul propriu spațiilor încălzite și de 3,2 % respectiv 41,7 % cu privire la consumul de căldură la nivel de racord al instalației de încălzire a clădirii. Se menționează faptul că martorul modelul de calcul dinamic este validat experimental.
- **14.** În ceea ce privește analiza care vizează **clădirea de birouri** aceasta utilizează același algoritm de comparare a rezultatelor, respectiv modelul dinamic cu pas orar INCERC, NP 048-2006 actualizat (INCERC) și Mc 001/2-2006.
- **15.** Sinteza calculelor **pe suportul clădirii de tip birouri** relevă diferența de numai 0,5 % dintre rezultatele furnizate de Modelul de calcul orar INCERC și modelul NP 048-2006 (INCERC) și

provided by the INCERC hourly calculation model and the NP 048-2006 (INCERC) model on one hand and, on the other hand, the unacceptable difference between the results of the INCERC dynamic calculation model and the Mc 001/2-2006 calculation method (according to the European standards) of 23.6 % referring to the heated spaces specific consumption and that of 0.6 % and 31.5 % respectively, referring to the heat consumption at the building heating system connection. The witness—the dynamic calculation model—is experimentally validated.

16. The main conclusion drawn from the completion of the research study is that the calculation model included in Mc 001/2-2006 and in the European standards is unacceptable in the case of the PEC (Building Energy Performance) analysis. The Mc 001-2006 regulation should be updated based on the results of this research activity. At the same time, it is necessary to use a detailed calculation model specific to the PEC assessment in the case of new and existing buildings, experimentally validated, as an instrument used at a national level to harmonize all the alternative calculation methods, by instating the Validation Calculation Model (MCV), structured in terms of the hourly pace model and with alternating decisional steps.

REFERENCES

- [1] Constantinescu, D., Petran, H. Existing Buildings Energy Imprint (AE) an Instrument of Evaluating Real PEC in Real Conditions of Climatic and Anthropic loading, CONSTRUCȚII Review, no. 1/2010, Ed. AGIR (Publishing House), Bucharest
- [2] Constantinescu, D., Petran, H., Petcu, Cr. Energy Performance of New and Existing Buildings Theoretical Substantiation, Publishing House of the Architecture and Urban Planning University "Ion Mincu" UAUIM, Bucharest, 2009
- [3] *** Impact of the Modern Solutions of Existing Buildings Energy-related Upgrading on their Energy and Economic Performance, Contract no. 6 B02 Amtrans, phases 3 and 4/2004
- [4] Constantinescu, D. *Present and Future of Solar Energy* chapters 6 and 7, Ed. Academiei, Bucharest, 1982
- [5] SR EN 13790/2008 Buildings Energy Performance. Calculation of the Energy Demand for Space Heating and Cooling

diferența inacceptabilă dintre rezultatele modelului de calcul dinamic INCERC și metoda de calcul Mc 001/2-2006 (conform standardelor europene) de 23,6 %, cu privire la consumul propriu spațiilor încălzite și de 0,6 % respectiv 31,5 % cu privire la consumul de căldură la nivel de racord al instalației de încălzire a clădirii. Se menționează faptul că martorul – modelul de calcul dinamic – este validat experimental.

16. Principala concluzie care rezultă ca urmare a finalizării cercetării este că modelul de calcul inclus în Mc 001/2-2006 și în standardele europene este inacceptabil in cazul analizei PEC. Se impune actualizarea reglementarii Mc 001-2006 pe baza rezultatelor cercetării autohtone. Totodată utilizarea unui model de calcul detaliat propriu evaluării PEC a clădirilor noi și existente, validat experimental, se impune cu necesitate ca instrument de armonizare la nivel național a tuturor metodelor de calcul alternative, prin constituirea Modelului de Calcul de Validare (MCV), structurat în conformitate cu modelul cu pas orar si pasi de decizie de tip alternant.

BIBLIOGRAFIE

- [1] Constantinescu, D., Petran, H. Amprenta energetică (AE) a clădirilor existente instrument de evaluare a PEC reale în condiții reale de solicitare climatică și de tip antropic, **Rev. Construcții** nr. 1/2010, Ed. AGIR, București, 2010
- [2] Constantinescu, D., Petran, H., Petcu, Cr. Performanța Energetică a Clădirilor noi și existente Fundamentare teoretică, Editura Facultății de Arhitectură și Urbanism "Ion Mincu" UAUIM, București, 2009
- [3] *** Impactul soluțiilor moderne de reabilitare energetică a clădirilor existente asupra performanței energetice și economice a acestora, contr. nr. 6 B02 Amtrans, fazele 3 și 4/2004
- [4] Constantinescu, D. *Prezentul și viitorul energiei* solare cap. 6 și 7, Ed. Academiei, București, 1982
- [5] SR EN 13790 / 2008 Performanța energetică a clădirilor. Calculul necesarului de energie pentru încălzirea și răcirea spațiilor
- [6] SR EN ISO 13791:2006 Performanța termică a clădirilor. Calculul temperaturii interioare a unei încăperi în timpul verii, fără climatizare. Criterii generale și proceduri de validare

- [6] SR EN ISO 13791:2006 Buildings Thermal Performance. Calculation of the Indoor Temperature of a Room in Summer, with no Air Conditioning. General Criteria and Validation Procedures
- [7] SR EN ISO 13792:2006 Buildings Thermal Performance. Calculation of the Indoor Temperature of a Room in Summer, with no Air Conditioning. Simplified Calculation Methods
- [8] Constantinescu, D. Petran, H., Petcu, C. Assessment of the Energy Performance of the System consisting of a Solar Space Attached to the CE INCERC Bucharest Experimental Building, Construcții Review, no. 1/2010, Ed. AGIR, Bucharest, 2010
- [9] Constantinescu, D. Heat Engineering Treatise. Heat Engineering in Construction, Vol. 1, Ed. AGIR, Bucharest, 2008
- [10] * * * Determination of the Typical Climatic Year necessary in the Calculations of Systems Dimensioning and of Assessing the Buildings Energy Performance, Contract no. 343 / 2008 INCERC-MDRL
- [11] *** Diversification of Energy-related Referentials, Contract no. 338 / 2009 INCERC-MDRL
- [12] Mc 001 / 2-2006 Energy Performance of the Building Systems, Ed. INCERC, **Buletinul** Construcțiilor, vol. 4-7/2007, Bucharest, 2007

- [7] SR EN ISO 13792:2006 Performanța termică a clădirilor. Calculul temperaturii interioare a unei încăperi în timpul verii, fără climatizare. Metode de calcul simplificate
- [8] Constantinescu, D. Petran, H., Petcu, C. Evaluarea performanței energetice a Sistemului Spațiu Solar atașat Clădirii Experimentale CE INCERC București, Rev. Construcții, nr. 1/2010, Ed. AGIR, București, București, 2010
- [9] Constantinescu, D. *Tratat de inginerie termică*. *Termotehnica în construcții*, Vol. 1, Editura AGIR, Buicurești, 2008
- [10] *** Determinarea anului climatic tip necesar calculelor de dimensionare a instalațiilor și de evaluare a performanței energetice a clădirilor, contr. nr. 343/2008 INCERC-MDRL
- [11] *** Diversificarea referențialelor energetice, contr. nr. 338/2009 INCERC-MDRL
- [12] Mc 001/2-2006 Performanța energetică a instalațiilor aferente clădirii, Editura INCERC, Buletinul Construcțiilor, vol. 4-7/2007, București, 2007