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ABSTRACT

The heat storage unit is an important factor in

determining the technical performance specific to

a solar installation used in warm water producing

on in space heating. The practical solutions used

at present are economically based on short-time

storage unit. Most installations have water sensible

heat storage. For most small and mean installations,

the calculus is based on two operational

hypotheses of the heat storage unit: with perfect

temperature stratification and with water uniform

temperature. Both calculus models are limit cases,

so they are not realistic. This paper introduces a

calculus method based on the thermal response of

the heat storage unit at impulsional excitations.

Starting from the heat storage unit thermal

response, the installation overall performance for

long periods of time may be studied. This method

proves valid for large central installations (S
p

≥

2,00 m
2

) and requires computer calculus. The

solution described in the paper is  part of an

INCERC research computer program.

Key words: solar systems, thermal storage,

renewable energy

I. Introduction

Common warm water producing solar

installations (used either for dwelling space heating

in active heating installations or to supply domestic

or technological requirements) generally include heat

storage units. Such installations are presently

equipped with short-time storage units (STSU),

because of their high price which imposes economic

restrictions. The heat storage unit is considerably

important for the installation energy balance: solar

radiation collecting efficiency depends on storage

unit temperature level. Two simplified calculus

models are used in solar installation dimension-ing

practical calculus. One of them [1] implies

a perfect stratification of the STSU water

temperature, so that during the heat accumulation

period, the temperature value of the water

introduced in the collecting loop is constant and equal

to the cold water temperature value. The other

model [2] implies a uniform temperature for each

moment in STSU mass. This model also has an

improved variant with the analysis performed on

uniform temperature sections, using three calculus

nodes [2]. Both models are particular cases of solar

installation service:

– the stratification model corresponds to heat

carrier low flow-rate values (the STSU water

is circulated once a day through

the solar collectors or through the solar

installation heat exchangers);

– the uniform temperature model

corresponds to heat carrier high flow-rate

REZUMAT

Unitatea de stocaj termic este un element cu rol

mediului de stocaj. Ambele modele de calcul sunt

cazuri extreme, deci nu sunt realiste. Prezentul

centrale de mari dimensiuni (S
P

 ≥ 2,00 m
2

prezentul articol este parte a unui program de

cercetare INCERC.

Cuvinte cheie:

D. Constantinescu



65 – Nr. 1 / 2007

Analysis model for solar installations with short-time storage and liquid storage medium

values (the STSU mass water is recalculated

within less than an hour through the solar

collectors or through the solar installation heat

exchangers).

Any complete analysis of solar installations

considered in calculus different heat carrier flow-

rate values, without using different mathematical

models. The heat carrier flow-rate represents a

decision taken according to the analysis of the effect

on the installation overall performance.

This paper introduces an analysis method of

solar installation service based on STSU thermal

response. The STSU heat balance is described by

the mathematical model of the unisothermal flow

through cylindrical pipes with uniform velocity

profile.

The first part describes the analytical solution

of the problem, using impulsional functions as thermal

excitation function.

The second part briefly describes the way of

using the method in the system overall analysis

required by solar installation dimensioning. We have

to mention that the analytical solution is valid only

for large seasonal domestic warm water producing

installations (S
p

≥ 2,00 m
2

) with the cold water

temperature value close to the environment

temperature or for heating installations with storage

tanks placed in heated spaces (t
s

 > t
ext

).

II. STSU unitary thermal response

For practical reasons, the STSU will be

cylindrical and the heat carrier will flow along the

generatrix. As the section of commonly used storage

tanks is rather large, the heat carrier velocity is

considered constant and with uniform profile. The

thermophysical properties of the heat carrier do not

vary according to temperature.

The equation describing the STSU thermal

behaviour is the Khirchoff-Fourier equation for

transient conditions, written within cylindrical

coordinates and without heat sources (fig. 1). This

equation may be integrated only if the initial and

boundary conditions are stated.

As the SYSU has limited functionality in

time (generally ≅ 24 h), the initial temperature

may be considered to coincide with the lowest

temperature in the system (e.g. for warm water

producing installations, with the cold water

temperature). As concerns the boundary

conditions, they describe the heat losses from

the storage tank water to environment, through

Figure 1. Calculus diagram
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the lateral and bottom surfaces of the STSU. For

simplification, the environment temperature value

may be considered equal to the initial temperature

value of the STSU water.

For the upper part of the STSU, the heating

heat carrier is supposed to be uniformly distributed

on x = 0 coordinate surface. The mathematical

function describing its temperature variation in time

is the STSU actual excitation function. In order to

obtain the STSU unitary thermal response, an

impulsional function f (τ) will be used. Triangular

impulse functions are to be used [3].

The mathematical expression of the problem is

therefore the following:
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where f (τ) is the impulsional excitation function.

At STSU outlet, the water temperature is the

average temperature value in section x = H:

∫
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A new variable is used instated of function ϑ

(τ, x, r):

s
trxrx −τϑ=τΘ ),,(),,( (5)

Using Laplace transformation and consider-

ing the initial condition, equation (1) becomes:
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where

)},,({),,( rxrxp τΘ=Θ L (7)

In order to integrate equation (6), the variable

separation method is used and the following solution

is suggested:

)()( rRxX ⋅=Θ (8)

By replacing (8) in equation (6) and by

separating variables X (x) and R (r), two ordinary

differential equations are obtained:
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where 

2

j
λ  represents eigenvalues.

The boundary conditions (3
1

), (3
4

) become:
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Equation (9
2

) is reduced to a Bessel equation

whose solution is:
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By using boundary conditions (10
1

) and (10
3

),

the eingenvalue equation is obtained:
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where Bi is Biot’s dimensionless number determined

for water soil overall heat transfer. The solutions of

equation (12) are obtained for each particular case

to be analysed. For example, considering STSU with

250 m
3

 capacity and 2 m height, for several Bi values,

the following first five eigenvalues results:

where:

R

a

v

j

j
⋅

λ

=

δ – STSU heat insulation thickness [m].

The solution of equation (9
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 are the characteristic equation

solutions:
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where: Pe is Peclet’s dimensionless number. The two

solutions X (x) and R (r) are grouped under the form

of solution (8) and
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is obtained, where:
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Using boundary condition (10
4

) and con-

sidering the orthogonalaty of Bessel’s functions,
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The transformed solution of equation (1) will

ultimately have the following expression:
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2.33 0.2 1.60 4.36 7.40 10.40 13.44

1.17 0.4 1.26 4.10 7.20 10.25 13.44

0.82 0.6 1.12 4.00 7.20 10.25 13.44

0.58 0.8 1.00 3.95 7.20 10.25 13.44

0.47 1.0 0.92 3.90 7.20 10.25 13.44

0.39 1.2 0.85 3.90 7.20 10.25 13.44

0.34 1.4 0.80 3.90 7.20 10.25 13.44
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The original solution will be obtained either by

using the theorem of residues or by using Laplace

transformation conversion tables:
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The temperature pattern profile inside STSU

at each moment τ is obtained using relation (17).

Considering relation (5), the STSU water outlet

temperature is determined using (4).

We note:
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STSU thermal response.

If the actual excitation of STSU is repre-

sented by a time function F (τ), the STSU thermal

response at this type of excitation is determined

using relation:

)(*)()( ττ=τ FrR (19)

The excitation function is represented by the

temperature variation of the heat carrier introduced

in the STSU; the heat carrier is heated by the solar

collectors.

III. STSU transient analysis

In order to determine the efficiency of a

STSU, the temperature pattern at any moment

should be know, mainly at the end of the heat

accumulation period. Supposing that the solar

installation is equipped with a solar radiation

collecting area S
p

, according to the heat carrier

specific flow-rate, to the geometrical and physical

characteristics of the STSU and to the radiative

climate determined by the equivalent temperature

t
E

 (τ), the heat quantity introduced in the STSU

is calculated using relation

ps
SIQ ⋅⋅η= (20)

The solar radiation collecting efficiency

is determined using the solar collector characteristic

equation, according to the heat carrier average

temperature or to the heat carrier temperature when

introduced in the solar collector.
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For short or well insulated pipes, the following

approximation may be accepted:
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where r (j) – STSU unit thermal response.

The heat quantity accumulated during the service

period is determined using relation

)(

2

spAC
ttcgHRQ −⋅⋅⋅ρ⋅⋅⋅π= (23)

where:

t – average temperature value of the storage

tank water when the heat accumulation

period is over.

STSU efficiency is calculated using relation

S

AC

Q

Q

=ε (24)

Function ε is defined according to the

independent values conditioning the STSU thermal

performance. Decisions on the technical and

economic optimization of STSU solar heating system

may therefore be taken.

IV. Conclusions

STSU thermal response and accordingly

season service efficiency may be determined using

the method described above. Solar installation

dimensioning represents the result of long-period

dynamic analyses. The mathematical model, the

analytical solution and the practical method are

valid for the analysis of large central solar

installations.

In case of small installations, such an analysis is

complicated and not efficient considering the

computer operational time.

The solution introduced in this paper is part of

an INCERC calculus program, to be used in

analyzing urban planning solutions for towns with

seasonal warm water producing solar installations

(service period: May-October).

Nomenclature

t
ext

– environment temperature [°C]

t
s

– storage tank water initial temperature [°C]

t
E

 (τ) – sol-air temperature [°C]

t
R

 (τ) – water temperature at solar collector inlet [°C]

t
c

 (τ) – water temperature at solar collector outlet [°C]

ϑ – temperature function

Q
AC

– heat quantity supplied and stored [kWh]

Q
s

– heat quantity admitted in storage tank [kWh]

W – storage tank water flow velocity [m / s]

K – water – environment heat loss overall coefficient

[W / m
2

K]

K
Σ

– solar collector heat loss overall coefficient

[W / m
2

K]

I – solar radiation intensity [W / m
2

]

a& – water specific flow rate in solar collectors

[kg/m
2

s]

a – water heat diffusivity [m
2 

/ s]

λ – water thermal conductibility [W / mK]

c
p

– water specific heat [J / kgK]

ρ – water density [kg / m
3

]

R – storage tank radius [m]

H – storage tank height [m]

S
p

– solar radiation collecting area [m
2

]

F
R

– solar collector heat removal factor

λ
j

– eigenvalues

η – solar radiation collecting efficiency

p – complex variable

Bi – Biot′s dimensionless number

Pe – Peclet′s dimensionless number
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